Skip to main content

2016 | OriginalPaper | Buchkapitel

8. Fluoro-polyanionic Compounds

verfasst von : Christian Julien, Alain Mauger, Ashok Vijh, Karim Zaghib

Erschienen in: Lithium Batteries

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we present the progress that allows several lithium-intercalation compounds to become the active cathode element of a new generation of Li-ion batteries, namely the materials with a poly-anion-based structure M x (XO4) y (M is a transition-metal cation and X = P, S), which are promising to improve the technology of energy storage and electric transportation, and address the replacement of gasoline engine by meeting the increasing demand for green energy power sources. The electrode materials considered here are fluorine-containing compounds including fluorophosphates LiMPO4F (M = V, Fe, T), Li2 M′PO4F (M = Fe, Co, Ni), hybrid ion Li x Na1−x VPO4F, and fluorosulfates LiMSO4F; M = Fe, Co, Ni, Mn, Zn, Mg). The electrochemical performance of these materials as the active cathode element of Li-ion batteries is also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154CrossRef Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154CrossRef
2.
Zurück zum Zitat Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sourc 26:403–408CrossRef Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sourc 26:403–408CrossRef
3.
Zurück zum Zitat Padhi AK, Nanjundaswamy KS, Goodenough JB (1998) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1998) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
4.
Zurück zum Zitat Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid State Lett 5:A149–A151CrossRef Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid State Lett 5:A149–A151CrossRef
5.
Zurück zum Zitat Yin C, Grondey H, Strobel P, Nazar LF (2004) Li2.5 V2(PO4)3: a room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Chem Mater 16:1456–1465CrossRef Yin C, Grondey H, Strobel P, Nazar LF (2004) Li2.5 V2(PO4)3: a room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Chem Mater 16:1456–1465CrossRef
6.
Zurück zum Zitat Azmi BM, Ishihara T, Nishiguchi H, Takita Y (2005) LiVOPO4 as a new cathode materials for Li-ion rechargeable battery. J Power Sourc 146:525–528CrossRef Azmi BM, Ishihara T, Nishiguchi H, Takita Y (2005) LiVOPO4 as a new cathode materials for Li-ion rechargeable battery. J Power Sourc 146:525–528CrossRef
7.
Zurück zum Zitat Gaubicher J, Le Mercier T, Chabre Y, Angenault J, Quarton M (1999) Li/β-VOPO4: a new 4 V system for lithium batteries articles. J Electrochem Soc 146:4385–4389 Gaubicher J, Le Mercier T, Chabre Y, Angenault J, Quarton M (1999) Li/β-VOPO4: a new 4 V system for lithium batteries articles. J Electrochem Soc 146:4385–4389
8.
Zurück zum Zitat Rousse G, Wurm C, Morcrette M, Rodriguez-Carvajal J, Gaubicher J, Masquelier C (2001) Crystal structure of a new vanadium(IV) diphosphate VP2O8, prepared by lithium extraction from LiVP2O8. Int J Inorg Mater 3:881–888CrossRef Rousse G, Wurm C, Morcrette M, Rodriguez-Carvajal J, Gaubicher J, Masquelier C (2001) Crystal structure of a new vanadium(IV) diphosphate VP2O8, prepared by lithium extraction from LiVP2O8. Int J Inorg Mater 3:881–888CrossRef
9.
Zurück zum Zitat Barker J, Gover RKB, Burns P, Bryan A (2005) LiVP2O8: a viable lithium-ion cathode material. Electrochem Solid State Lett 8:A446–A448CrossRef Barker J, Gover RKB, Burns P, Bryan A (2005) LiVP2O8: a viable lithium-ion cathode material. Electrochem Solid State Lett 8:A446–A448CrossRef
10.
Zurück zum Zitat Kim GH, Myung ST, Bang HJ, Prakash J, Sun YK (2004) Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFy via coprecipitation. Electrochem Solid State Lett 8:A480–A488 Kim GH, Myung ST, Bang HJ, Prakash J, Sun YK (2004) Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFy via coprecipitation. Electrochem Solid State Lett 8:A480–A488
11.
Zurück zum Zitat Son JT, Kim HG (2005) New investigation of fluorine-substituted spinel LiMn2O4−x F x by using sol–gel process. J Power Sourc 148:220–226CrossRef Son JT, Kim HG (2005) New investigation of fluorine-substituted spinel LiMn2O4−x F x by using sol–gel process. J Power Sourc 148:220–226CrossRef
12.
Zurück zum Zitat Luo Q, Muraliganth T, Manthiram A (2009) On the incorporation of fluorine into the manganese spinel cathode lattice. Solid State Ionics 180:803–808CrossRef Luo Q, Muraliganth T, Manthiram A (2009) On the incorporation of fluorine into the manganese spinel cathode lattice. Solid State Ionics 180:803–808CrossRef
13.
Zurück zum Zitat Stroukoff KR, Manthiram A (2011) Thermal stability of spinel Li1.1Mn1.9-yMyO4-zFz (M = Ni, Al, and Li, 0 ≤ y ≤ 0.3, and 0 ≤ z ≤ 0.2) cathodes for lithium ion batteries. J Mater Chem 21:10165–10180CrossRef Stroukoff KR, Manthiram A (2011) Thermal stability of spinel Li1.1Mn1.9-yMyO4-zFz (M = Ni, Al, and Li, 0 ≤ y ≤ 0.3, and 0 ≤ z ≤ 0.2) cathodes for lithium ion batteries. J Mater Chem 21:10165–10180CrossRef
14.
Zurück zum Zitat Yue P, Wang Z, Guo H, Xiong X, Li X (2013) A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2−zFz cathode materials. Electrochim Acta 92:1–8CrossRef Yue P, Wang Z, Guo H, Xiong X, Li X (2013) A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2−zFz cathode materials. Electrochim Acta 92:1–8CrossRef
15.
Zurück zum Zitat Yue P, Wang Z, Li X, Xiong X, Wang J, Wu X, Guo H (2013) The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim Acta 95:112–118CrossRef Yue P, Wang Z, Li X, Xiong X, Wang J, Wu X, Guo H (2013) The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim Acta 95:112–118CrossRef
16.
Zurück zum Zitat Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sourc 195:939–954CrossRef Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sourc 195:939–954CrossRef
17.
Zurück zum Zitat Yun SH, Park KS, Park YJ (2010) The electrochemical property of ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material. J Power Sourc 195:6108–6115CrossRef Yun SH, Park KS, Park YJ (2010) The electrochemical property of ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material. J Power Sourc 195:6108–6115CrossRef
18.
Zurück zum Zitat Park BC, Kim HB, Myung ST, Amine K, Belharouak I, Lee SM, Sun YK (2008) Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. J Power Sourc 188:826–831CrossRef Park BC, Kim HB, Myung ST, Amine K, Belharouak I, Lee SM, Sun YK (2008) Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. J Power Sourc 188:826–831CrossRef
19.
Zurück zum Zitat Xu K, Jie Z, Li R, Chen Z, Wu S, Gu J, Chen J (2012) Synthesis and electrochemical properties of CaF2-coated for long-cycling Li[Mn1/3Co1/3Ni1/3]O2 cathode materials. Electrochim Acta 60:130–133CrossRef Xu K, Jie Z, Li R, Chen Z, Wu S, Gu J, Chen J (2012) Synthesis and electrochemical properties of CaF2-coated for long-cycling Li[Mn1/3Co1/3Ni1/3]O2 cathode materials. Electrochim Acta 60:130–133CrossRef
20.
Zurück zum Zitat Shi SJ, Tu JP, Tang YY, Zhang YQ, Liu XY, Wang XL, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sourc 225:338–346CrossRef Shi SJ, Tu JP, Tang YY, Zhang YQ, Liu XY, Wang XL, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sourc 225:338–346CrossRef
21.
Zurück zum Zitat Barpanda P, Tarascon JM (2013) Fluorine-based polyanionic compounds for high-voltage electrode materials (Chapter 8). In: Scrosati B, Abraham KM, Van Schalkwijk W, Hassoun J (eds) Lithium batteries: advanced technologies and applications. John Wiley & Sons, New York, NY Barpanda P, Tarascon JM (2013) Fluorine-based polyanionic compounds for high-voltage electrode materials (Chapter 8). In: Scrosati B, Abraham KM, Van Schalkwijk W, Hassoun J (eds) Lithium batteries: advanced technologies and applications. John Wiley & Sons, New York, NY
22.
Zurück zum Zitat Julien CM, Mauger A (2013) Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics 19:951–988CrossRef Julien CM, Mauger A (2013) Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics 19:951–988CrossRef
23.
Zurück zum Zitat Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sourc 238:229–242CrossRef Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sourc 238:229–242CrossRef
24.
Zurück zum Zitat Goodenough JB (1994) Design considerations. Solid State Ionics 69:184–198CrossRef Goodenough JB (1994) Design considerations. Solid State Ionics 69:184–198CrossRef
25.
Zurück zum Zitat Islam MS, Fisher CAJ (2013) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204CrossRef Islam MS, Fisher CAJ (2013) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204CrossRef
26.
Zurück zum Zitat Saubanère M, Ben-Yahia M, Lemoigno F, Doublet ML (2013) Beyond the inductive effect to increase the working voltage of cathode materials for Li-ion batteries. ECS Meeting Abstracts MA2013-02, p 840 Saubanère M, Ben-Yahia M, Lemoigno F, Doublet ML (2013) Beyond the inductive effect to increase the working voltage of cathode materials for Li-ion batteries. ECS Meeting Abstracts MA2013-02, p 840
27.
Zurück zum Zitat Goodenough JB (2002) Oxide cathodes (Chapter 4). In: van Schalkwijk W, Scrosati B (eds) Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York, NY Goodenough JB (2002) Oxide cathodes (Chapter 4). In: van Schalkwijk W, Scrosati B (eds) Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York, NY
28.
Zurück zum Zitat Arroyo de Dompablo ME, Amador U, Tarascon JM (2008) A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries. J Power Sourc 184:1251–1258 Arroyo de Dompablo ME, Amador U, Tarascon JM (2008) A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries. J Power Sourc 184:1251–1258
29.
Zurück zum Zitat Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10CrossRef Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10CrossRef
30.
Zurück zum Zitat Pahdi AK, Manivannan M, Goodenough JB (1998) Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc 145:1518–1520CrossRef Pahdi AK, Manivannan M, Goodenough JB (1998) Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc 145:1518–1520CrossRef
31.
Zurück zum Zitat Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 8:156–160CrossRef Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 8:156–160CrossRef
32.
Zurück zum Zitat Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc 150:A1394–A1398CrossRef Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc 150:A1394–A1398CrossRef
33.
Zurück zum Zitat Ellis BL, Makahnouk WRM, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF (2010) Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem Mater 22:1059–1080CrossRef Ellis BL, Makahnouk WRM, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF (2010) Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem Mater 22:1059–1080CrossRef
34.
Zurück zum Zitat Ramesh TN, Lee KT, Ellis BL, Nazar LF (2010) Tavorite lithium iron fluorophosphates cathode materials: phase transition and electrochemistry of LiFePO4F-Li2FePO4F. Electrochem Solid State Lett 13:A43–A48CrossRef Ramesh TN, Lee KT, Ellis BL, Nazar LF (2010) Tavorite lithium iron fluorophosphates cathode materials: phase transition and electrochemistry of LiFePO4F-Li2FePO4F. Electrochem Solid State Lett 13:A43–A48CrossRef
35.
Zurück zum Zitat Recham N, Dupont L, Courty M, Djellab K, Larcher D, Armand M, Tarascon JM (2009) Ionothermal synthesis of Li-based fluorophosphates electrodes. Chem Mater 22:1142–1148CrossRef Recham N, Dupont L, Courty M, Djellab K, Larcher D, Armand M, Tarascon JM (2009) Ionothermal synthesis of Li-based fluorophosphates electrodes. Chem Mater 22:1142–1148CrossRef
36.
Zurück zum Zitat Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9:68–84CrossRef Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9:68–84CrossRef
37.
Zurück zum Zitat Mueller T, Hautier G, Jain A, Ceder G (2011) Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem Mater 23:3854–3862CrossRef Mueller T, Hautier G, Jain A, Ceder G (2011) Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem Mater 23:3854–3862CrossRef
38.
Zurück zum Zitat Chowdari BVR, Mok KF, Xie JM, Gopalakrishnan R (1995) Electrical and structural studies of lithium fluorophosphates glasses. Solid State Ionics 86:189–198CrossRef Chowdari BVR, Mok KF, Xie JM, Gopalakrishnan R (1995) Electrical and structural studies of lithium fluorophosphates glasses. Solid State Ionics 86:189–198CrossRef
39.
Zurück zum Zitat Sreedhar B, Sairam M, Chattopadhyay DK, Kojima K (2005) Preparation and characterization of lithium fluorophosphates glasses doped with MoO3. Mater Chem Phys 92:492–498CrossRef Sreedhar B, Sairam M, Chattopadhyay DK, Kojima K (2005) Preparation and characterization of lithium fluorophosphates glasses doped with MoO3. Mater Chem Phys 92:492–498CrossRef
40.
Zurück zum Zitat Ellis BL, Ramesh TN, Davis LJM, Govard GR, Nazar LF (2011) Structure and electrochemistry of two-electron redox couples in lithium metal fluorophosphates based on the tavorite structure. Chem Mater 23:5138–5148CrossRef Ellis BL, Ramesh TN, Davis LJM, Govard GR, Nazar LF (2011) Structure and electrochemistry of two-electron redox couples in lithium metal fluorophosphates based on the tavorite structure. Chem Mater 23:5138–5148CrossRef
41.
Zurück zum Zitat Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2008) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:849–853 Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2008) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:849–853
42.
Zurück zum Zitat Okada S, Ueno M, Uebou Y, Yamaki JI (2005) Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J Power Sourc 146:565–569CrossRef Okada S, Ueno M, Uebou Y, Yamaki JI (2005) Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J Power Sourc 146:565–569CrossRef
43.
Zurück zum Zitat Dutreilh M, Chevalier C, El-Ghozzi M, Avignant D, Montel JM (1999) Synthesis and crystal structure of a new lithium nickel fluorophosphates Li2NiFPO4 with an ordered mixed anionic framework. J Solid State Chem 142:1–5CrossRef Dutreilh M, Chevalier C, El-Ghozzi M, Avignant D, Montel JM (1999) Synthesis and crystal structure of a new lithium nickel fluorophosphates Li2NiFPO4 with an ordered mixed anionic framework. J Solid State Chem 142:1–5CrossRef
44.
Zurück zum Zitat Liao XZ, He YS, Ma ZF, Zhang XM, Wang L (2008) Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials. J Power Sourc 184:820–825 Liao XZ, He YS, Ma ZF, Zhang XM, Wang L (2008) Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials. J Power Sourc 184:820–825
45.
Zurück zum Zitat Pan M, Lin X, Zhou Z (2011) Electrochemical performance of LiFePO4/C doped with F synthesized by carbothermal reduction method using NH4F as dopant. J Solid State Electrochem 16:1615–1621CrossRef Pan M, Lin X, Zhou Z (2011) Electrochemical performance of LiFePO4/C doped with F synthesized by carbothermal reduction method using NH4F as dopant. J Solid State Electrochem 16:1615–1621CrossRef
46.
Zurück zum Zitat Lu F, Zhou Y, Liu J, Pan Y (2011) Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochim Acta 56:8833–8838CrossRef Lu F, Zhou Y, Liu J, Pan Y (2011) Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochim Acta 56:8833–8838CrossRef
47.
Zurück zum Zitat Pan F, Wang W (2012) Synthesis and characterization of core–shell F-doped LiFePO4/C composite for lithium-ion batteries. J Solid State Electrochem 16:1423–1428CrossRef Pan F, Wang W (2012) Synthesis and characterization of core–shell F-doped LiFePO4/C composite for lithium-ion batteries. J Solid State Electrochem 16:1423–1428CrossRef
48.
Zurück zum Zitat Milovic M, Jugovic D, Cvjeticanin N, Uskokovic D, Milosevic AS, Popovic ZS, Vukajlovic FR (2013) Crystal structure analysis and first principle investigation of F doping in LiFePO4. J Power Sourc 241:80–89CrossRef Milovic M, Jugovic D, Cvjeticanin N, Uskokovic D, Milosevic AS, Popovic ZS, Vukajlovic FR (2013) Crystal structure analysis and first principle investigation of F doping in LiFePO4. J Power Sourc 241:80–89CrossRef
49.
Zurück zum Zitat Barker J, Saidi MY, Swoyer JL (2001) Lithium metal fluorophosphates materials and preparation thereof. International Patent, WO01/084,655 Barker J, Saidi MY, Swoyer JL (2001) Lithium metal fluorophosphates materials and preparation thereof. International Patent, WO01/084,655
50.
Zurück zum Zitat Barker J, Saidi MY, and J.L. Swoyer JL (2002) Lithium metal fluorophosphates materials and preparation thereof US Patent, 6,388,568 B1, 14 May 2002 Barker J, Saidi MY, and J.L. Swoyer JL (2002) Lithium metal fluorophosphates materials and preparation thereof US Patent, 6,388,568 B1, 14 May 2002
51.
Zurück zum Zitat Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. Electrochem Solid State Lett 6:A1–A4CrossRef Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. Electrochem Solid State Lett 6:A1–A4CrossRef
52.
Zurück zum Zitat Barker J, Saidi MY, Swoyer JL (2004) A Comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J Electrochem Soc 151:A1680–A1688 Barker J, Saidi MY, Swoyer JL (2004) A Comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J Electrochem Soc 151:A1680–A1688
53.
Zurück zum Zitat Barker J (2005) Lithium-containing phosphate active materials. US Patent, 6,890,686 B1, 10 May 2005 Barker J (2005) Lithium-containing phosphate active materials. US Patent, 6,890,686 B1, 10 May 2005
54.
Zurück zum Zitat Barker J, Gover RKB, Burns P, Bryan AJ (2005) Hybrid-ion, a symmetrical lithium-ion cell based on lithium vanadium fluorophosphates LiVPO4F. Electrochem Solid State Lett 8:A285–A288CrossRef Barker J, Gover RKB, Burns P, Bryan AJ (2005) Hybrid-ion, a symmetrical lithium-ion cell based on lithium vanadium fluorophosphates LiVPO4F. Electrochem Solid State Lett 8:A285–A288CrossRef
55.
Zurück zum Zitat Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Performance evaluation of lithium vanadium fluorophosphate in lithium metal and lithium-ion cells. J Electrochem Soc 152:A1886–A1889 Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Performance evaluation of lithium vanadium fluorophosphate in lithium metal and lithium-ion cells. J Electrochem Soc 152:A1886–A1889
56.
Zurück zum Zitat Barker J, Saidi MY, Swoyer JL (2005) Lithium metal fluorophosphates materials and preparation thereof. US Patent, 6,855,462 B2, 15 Feb 2005 Barker J, Saidi MY, Swoyer JL (2005) Lithium metal fluorophosphates materials and preparation thereof. US Patent, 6,855,462 B2, 15 Feb 2005
57.
Zurück zum Zitat Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sourc 146:516–520CrossRef Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sourc 146:516–520CrossRef
58.
Zurück zum Zitat Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL, Barker J (2006) LiVPO4F: a new active material for safe lithium-ion batteries. Solid State Ionics 188:2635–2638CrossRef Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL, Barker J (2006) LiVPO4F: a new active material for safe lithium-ion batteries. Solid State Ionics 188:2635–2638CrossRef
59.
Zurück zum Zitat Barker J, Saidi MY, Gover RKB, Burns P, Bryan A (2008) The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate LiVPO4F. J Power Sourc 184:928–931 Barker J, Saidi MY, Gover RKB, Burns P, Bryan A (2008) The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate LiVPO4F. J Power Sourc 184:928–931
60.
Zurück zum Zitat Lindberg ML, Pecora WT (1955) Tavorite and barbosalite, two new phosphate minerals from Minas Gerais Brazil. Am Mineral 40:952–966 Lindberg ML, Pecora WT (1955) Tavorite and barbosalite, two new phosphate minerals from Minas Gerais Brazil. Am Mineral 40:952–966
61.
Zurück zum Zitat Roberts AC, Dunn PJ, Grice JD, Newbury DE, Dale E, Roberts WL (1988) The X-ray crystallography of tavorite from the tip top pegmatite, custer, South Dakota. Powder Diffr 3:93–95CrossRef Roberts AC, Dunn PJ, Grice JD, Newbury DE, Dale E, Roberts WL (1988) The X-ray crystallography of tavorite from the tip top pegmatite, custer, South Dakota. Powder Diffr 3:93–95CrossRef
62.
Zurück zum Zitat Groat LA, Raudseep M, Hawthorne FC, Ercit TS, Sherriff BL, Hartman JS (1990) The amblygonite-montebrasite series: characterization by single-crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy. Am Mineral 85:992–1008 Groat LA, Raudseep M, Hawthorne FC, Ercit TS, Sherriff BL, Hartman JS (1990) The amblygonite-montebrasite series: characterization by single-crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy. Am Mineral 85:992–1008
63.
Zurück zum Zitat Pizarro-Sanz JL, Dance JM, Villeneuve G, Arriortuz-Marcaida ML (1994) The natural and synthetic tavorite minerals: crystal chemistry and magnetic properties. Mater Lett 18:328–330CrossRef Pizarro-Sanz JL, Dance JM, Villeneuve G, Arriortuz-Marcaida ML (1994) The natural and synthetic tavorite minerals: crystal chemistry and magnetic properties. Mater Lett 18:328–330CrossRef
64.
Zurück zum Zitat Davis LJM, Ellis BL, Ramesh TN, Nazar LF, Bain AD, Govard GR (2011) 6Li 1D EXSY NMR spectroscopy: a new tool for studying lithium dynamics in paramagnetic materials applied to monoclinic Li2VPO4F. J Phys Chem C 115:22603–22608CrossRef Davis LJM, Ellis BL, Ramesh TN, Nazar LF, Bain AD, Govard GR (2011) 6Li 1D EXSY NMR spectroscopy: a new tool for studying lithium dynamics in paramagnetic materials applied to monoclinic Li2VPO4F. J Phys Chem C 115:22603–22608CrossRef
65.
Zurück zum Zitat Plashnitsa LS, Kobayashi E, Okada S, Yamaki JI (2011) Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte. Electrochim Acta 56:1344–1351CrossRef Plashnitsa LS, Kobayashi E, Okada S, Yamaki JI (2011) Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte. Electrochim Acta 56:1344–1351CrossRef
66.
Zurück zum Zitat Zhou F, Zhao X, Dahn JR (2011) Reactivity of charged LiVPO4F with 1 M LiPF6 EC:DEC electrolyte at high temperature as studied by accelerating rate calorimetry. Electrochem Commun 11:589–591CrossRef Zhou F, Zhao X, Dahn JR (2011) Reactivity of charged LiVPO4F with 1 M LiPF6 EC:DEC electrolyte at high temperature as studied by accelerating rate calorimetry. Electrochem Commun 11:589–591CrossRef
67.
Zurück zum Zitat Ma R, Shao L, Wu K, Shui M, Wang D, Long N, Ren Y, Shu J (2014) Effects of oxidation on structure and performance of LiVPO4F as cathode material for lithium-ion batteries. J Power Sourc 248:884–885 Ma R, Shao L, Wu K, Shui M, Wang D, Long N, Ren Y, Shu J (2014) Effects of oxidation on structure and performance of LiVPO4F as cathode material for lithium-ion batteries. J Power Sourc 248:884–885
68.
Zurück zum Zitat Davis LJ, Cahill LS, Nazar LF, Goward GR (2010) Studies of ion mobility in lithium vanadium fluorophosphates using multinuclear solid state NMR. ECS Meeting Abstracts, MA-2010-01, p 626 Davis LJ, Cahill LS, Nazar LF, Goward GR (2010) Studies of ion mobility in lithium vanadium fluorophosphates using multinuclear solid state NMR. ECS Meeting Abstracts, MA-2010-01, p 626
69.
Zurück zum Zitat Prabu M, Reddy MV, Selvasekarapandian S, Subba Rao GV, Chowdari BVR (2012) Synthesis, impedance and electrochemical studies of lithium iron fluorophosphate, LiFePO4F cathode. Electrochim Acta 85:582–588CrossRef Prabu M, Reddy MV, Selvasekarapandian S, Subba Rao GV, Chowdari BVR (2012) Synthesis, impedance and electrochemical studies of lithium iron fluorophosphate, LiFePO4F cathode. Electrochim Acta 85:582–588CrossRef
70.
Zurück zum Zitat Zheng JC, Zhang B, Yang ZH (2012) Novel synthesis of LiVPO4F cathode material by chemical lithiation and postannealing. J Power Sourc 202:380–383CrossRef Zheng JC, Zhang B, Yang ZH (2012) Novel synthesis of LiVPO4F cathode material by chemical lithiation and postannealing. J Power Sourc 202:380–383CrossRef
71.
Zurück zum Zitat Wang JX, Wang ZX, Shen L, Li XH, Guo HJ, Tang WJ, Zhu ZG (2013) Synthesis and performance of LiVPO4F/C-based cathode material for lithium ion battery. Trans Nonferrous Met Soc China 23:1818–1822 Wang JX, Wang ZX, Shen L, Li XH, Guo HJ, Tang WJ, Zhu ZG (2013) Synthesis and performance of LiVPO4F/C-based cathode material for lithium ion battery. Trans Nonferrous Met Soc China 23:1818–1822
72.
Zurück zum Zitat Zhang QM, Shi ZC, Li YX, Gao D, Chen GH, Yang Y (2011) Recent advances in fluorophosphate and orthosilicate cathode materials for lithium ion batteries. Acta Phys Chim Sin 28:268–284 Zhang QM, Shi ZC, Li YX, Gao D, Chen GH, Yang Y (2011) Recent advances in fluorophosphate and orthosilicate cathode materials for lithium ion batteries. Acta Phys Chim Sin 28:268–284
73.
Zurück zum Zitat Reddy MV, Subba-Rao GV, Chowdari BVR (2010) Long-term cycling studies on 4 V-cathode lithium vanadium fluorophosphates. J Power Sourc 195:5868–5884CrossRef Reddy MV, Subba-Rao GV, Chowdari BVR (2010) Long-term cycling studies on 4 V-cathode lithium vanadium fluorophosphates. J Power Sourc 195:5868–5884CrossRef
74.
Zurück zum Zitat Yu J, Rosso KM, Zhang JG, Liu J (2011) Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries. J Mater Chem 21:12054–12058CrossRef Yu J, Rosso KM, Zhang JG, Liu J (2011) Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries. J Mater Chem 21:12054–12058CrossRef
75.
Zurück zum Zitat Khasanova NR, Drozhzhin OA, Storozhilova DA, Delmas C, Antipov EV (2012) New form of Li2FePO4F as cathode material for Li-ion batteries. Chem Mater 24:4281–4283CrossRef Khasanova NR, Drozhzhin OA, Storozhilova DA, Delmas C, Antipov EV (2012) New form of Li2FePO4F as cathode material for Li-ion batteries. Chem Mater 24:4281–4283CrossRef
76.
Zurück zum Zitat Badi SP, Ramesh TN, Ellis B, Lee KT, Nazar LF (2009) Effect of substitution and solid solution behavior in lithium metal polyanion materials for Li-ion battery cathodes. ECS Meeting Abstracts, MA2009-02, p 398 Badi SP, Ramesh TN, Ellis B, Lee KT, Nazar LF (2009) Effect of substitution and solid solution behavior in lithium metal polyanion materials for Li-ion battery cathodes. ECS Meeting Abstracts, MA2009-02, p 398
77.
Zurück zum Zitat Okada S, Ueno M, Uebou Y, Yamaki JI (2004) Electrochemical properties of a new lithium cobalt fluorophosphate Li2[CoF(PO4)]. IMLB-12 Abstracts, p 301 Okada S, Ueno M, Uebou Y, Yamaki JI (2004) Electrochemical properties of a new lithium cobalt fluorophosphate Li2[CoF(PO4)]. IMLB-12 Abstracts, p 301
78.
Zurück zum Zitat Nagahama M, Hasegawa N, Okada S (2010) High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 158:A848–A852 Nagahama M, Hasegawa N, Okada S (2010) High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 158:A848–A852
79.
Zurück zum Zitat Khasanova NR, Gavrilov AN, Antipov EV, Bramnik KG, Hibst H (2011) Structural transformation of Li2CoPO4F upon Li-deintercalation. J Power Sourc 196:355–360CrossRef Khasanova NR, Gavrilov AN, Antipov EV, Bramnik KG, Hibst H (2011) Structural transformation of Li2CoPO4F upon Li-deintercalation. J Power Sourc 196:355–360CrossRef
80.
Zurück zum Zitat Wu X, Gong Z, Tan S, Yang Y (2012) Sol-gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries. J Power Sourc 220:122–129CrossRef Wu X, Gong Z, Tan S, Yang Y (2012) Sol-gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries. J Power Sourc 220:122–129CrossRef
81.
Zurück zum Zitat Kosova NV, Devyatkina ET, Slobodyuk AB (2012) In situ and ex situ X-ray study of formation and decomposition of Li2CoPO4F under heating and cooling. Investigation of its local structure and electrochemical properties. Solid State Ionics 225:580–584CrossRef Kosova NV, Devyatkina ET, Slobodyuk AB (2012) In situ and ex situ X-ray study of formation and decomposition of Li2CoPO4F under heating and cooling. Investigation of its local structure and electrochemical properties. Solid State Ionics 225:580–584CrossRef
82.
Zurück zum Zitat Karthikeyan K, Amaresh S, Kim KJ, Kim SH, Chung KY, Cho BW, Lee YS (2013) A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode. Nanoscale 5:5958–5964CrossRef Karthikeyan K, Amaresh S, Kim KJ, Kim SH, Chung KY, Cho BW, Lee YS (2013) A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode. Nanoscale 5:5958–5964CrossRef
83.
Zurück zum Zitat Amaresh S, Karthikeyan K, Kim KJ, Kim MC, Chung KY, Cho BW, Lee YS (2013) Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. J Power Sourc 244:395–402CrossRef Amaresh S, Karthikeyan K, Kim KJ, Kim MC, Chung KY, Cho BW, Lee YS (2013) Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. J Power Sourc 244:395–402CrossRef
84.
Zurück zum Zitat Wang D, Xiao J, Xu W, Nie Z, Wang C, Graff G, Zhang JG (2011) Preparation and electrochemical investigation of Li2CoPO4F cathode material for Li-ion batteries. J Power Sourc 196:2241–2245CrossRef Wang D, Xiao J, Xu W, Nie Z, Wang C, Graff G, Zhang JG (2011) Preparation and electrochemical investigation of Li2CoPO4F cathode material for Li-ion batteries. J Power Sourc 196:2241–2245CrossRef
85.
Zurück zum Zitat Dumont-Botto E, Bourbon C, Patoux S, Rozier P, Dolle M (2011) Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries. J Power Sourc 196:2284–2288 Dumont-Botto E, Bourbon C, Patoux S, Rozier P, Dolle M (2011) Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries. J Power Sourc 196:2284–2288
86.
Zurück zum Zitat Ben-Yahia H, Shikano M, Koike S, Sakaebe H, Tabuchi M, Kobayashi H (2013) New fluorophosphate Li2-xNaxFe[PO4]F as cathode material for lithium ion battery. J Power Sourc 244:88–93 Ben-Yahia H, Shikano M, Koike S, Sakaebe H, Tabuchi M, Kobayashi H (2013) New fluorophosphate Li2-xNaxFe[PO4]F as cathode material for lithium ion battery. J Power Sourc 244:88–93
87.
Zurück zum Zitat Gover RKB, Bryan A, Burns P, Barker J (2006) The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics 188:1495–1500CrossRef Gover RKB, Bryan A, Burns P, Barker J (2006) The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics 188:1495–1500CrossRef
88.
Zurück zum Zitat Barker J, Gover RKB, Burns P, Bryan AJ (2008) Li4/3Ti5/3O4//Na3V2(PO4)2F3: an example of a hybrid-ion cell using a non-graphitic anode. J Electrochem Soc 154:A882–A888CrossRef Barker J, Gover RKB, Burns P, Bryan AJ (2008) Li4/3Ti5/3O4//Na3V2(PO4)2F3: an example of a hybrid-ion cell using a non-graphitic anode. J Electrochem Soc 154:A882–A888CrossRef
89.
Zurück zum Zitat Park YU, Seo DH, Kim B, Hong KP, Kim H, Lee S, Shakoor RA, Miyasaka K, Tarascon JM, Kang K (2012) Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries. Sci Rep 2:804–811 Park YU, Seo DH, Kim B, Hong KP, Kim H, Lee S, Shakoor RA, Miyasaka K, Tarascon JM, Kang K (2012) Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries. Sci Rep 2:804–811
90.
Zurück zum Zitat Sauvage F, Quarez E, Tarascon JM, Baudrin E (2006) Crystal structure and electrochemical properties vs. Na+ of sodium fluorophosphates Na1.5VPO5F0.5. Solid State Sci 8:1215–1221CrossRef Sauvage F, Quarez E, Tarascon JM, Baudrin E (2006) Crystal structure and electrochemical properties vs. Na+ of sodium fluorophosphates Na1.5VPO5F0.5. Solid State Sci 8:1215–1221CrossRef
91.
Zurück zum Zitat Yin SC, Edwards R, Taylor N, Herle PS, Nazar LF (2006) Dimensional reduction: synthesis and structure of layered Li5 M(PO4)2F2 (M = V, Cr). Chem Mater 18:1845–1852 Yin SC, Edwards R, Taylor N, Herle PS, Nazar LF (2006) Dimensional reduction: synthesis and structure of layered Li5 M(PO4)2F2 (M = V, Cr). Chem Mater 18:1845–1852
92.
Zurück zum Zitat Makimura Y, Cahill LS, Iriyama Y, Goward GR, Nazar LF (2008) Layered lithium vanadium fluorophosphate, Li5V(PO4)2F2: A 4 V class positive electrode material for lithium-ion batteries. Chem Mater 20:4240–4248CrossRef Makimura Y, Cahill LS, Iriyama Y, Goward GR, Nazar LF (2008) Layered lithium vanadium fluorophosphate, Li5V(PO4)2F2: A 4 V class positive electrode material for lithium-ion batteries. Chem Mater 20:4240–4248CrossRef
93.
Zurück zum Zitat Sebastian L, Gopalakrishnan J, Piffard Y (2002) Synthesis crystal structure and lithium ion conductivity of LiMgFSO4. J Mater Chem 12:384–388CrossRef Sebastian L, Gopalakrishnan J, Piffard Y (2002) Synthesis crystal structure and lithium ion conductivity of LiMgFSO4. J Mater Chem 12:384–388CrossRef
94.
Zurück zum Zitat Ati M, Sougrati MT, Recham N, Barpanda P, Leriche JB, Courty M, Armand M, Jumas JC, Tarascon JM (2010) Fluorosulphate positive electrodes for Li-ion batteries made via a solid-state dry process. J Electrochem Soc 158:A1008–A1015 Ati M, Sougrati MT, Recham N, Barpanda P, Leriche JB, Courty M, Armand M, Jumas JC, Tarascon JM (2010) Fluorosulphate positive electrodes for Li-ion batteries made via a solid-state dry process. J Electrochem Soc 158:A1008–A1015
95.
Zurück zum Zitat Ati A, Walker WT, Djellab K, Armand M, Recham N, Tarascon JM (2010) Fluorosulfate positive electrode materials made with polymers as reacting media. Electrochem Solid State Lett 13:A150–A153CrossRef Ati A, Walker WT, Djellab K, Armand M, Recham N, Tarascon JM (2010) Fluorosulfate positive electrode materials made with polymers as reacting media. Electrochem Solid State Lett 13:A150–A153CrossRef
96.
Zurück zum Zitat Barpanda P, Chotard JN, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon JM (2010) LiZnSO4F made in an ionic liquid: a new ceramic electrolyte composite for solid-state Li-batteries. Angew Chem Int Ed 50:2526–2531CrossRef Barpanda P, Chotard JN, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon JM (2010) LiZnSO4F made in an ionic liquid: a new ceramic electrolyte composite for solid-state Li-batteries. Angew Chem Int Ed 50:2526–2531CrossRef
97.
Zurück zum Zitat Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM (2010) Structural, transport and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg Chem 49:8401–8413CrossRef Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM (2010) Structural, transport and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg Chem 49:8401–8413CrossRef
98.
Zurück zum Zitat Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem Int Ed 49:8838–8842CrossRef Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem Int Ed 49:8838–8842CrossRef
99.
Zurück zum Zitat Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem 122:8920–8924CrossRef Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem 122:8920–8924CrossRef
100.
Zurück zum Zitat Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armand M, Tarascon JM (2010) Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M = Co, Ni) phases fabricated by low temperature ionothermal synthesis. J Mater Chem 20:1659–1668CrossRef Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armand M, Tarascon JM (2010) Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M = Co, Ni) phases fabricated by low temperature ionothermal synthesis. J Mater Chem 20:1659–1668CrossRef
101.
Zurück zum Zitat Frayret C, Villesuzanne A, Spaldin N, Bousquet E, Chotard JN, Recham N, Tarascon JM (2010) LiMSO4F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope. Phys Chem Chem Phys 12:15512–15522CrossRef Frayret C, Villesuzanne A, Spaldin N, Bousquet E, Chotard JN, Recham N, Tarascon JM (2010) LiMSO4F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope. Phys Chem Chem Phys 12:15512–15522CrossRef
102.
Zurück zum Zitat Barpanda P, Ati M, Melot BC, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr SA, Jumas JC, Tarascon JM (2011) A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat Mater 10:882–889CrossRef Barpanda P, Ati M, Melot BC, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr SA, Jumas JC, Tarascon JM (2011) A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat Mater 10:882–889CrossRef
103.
Zurück zum Zitat Ati M, Melot BC, Rousse G, Chotard JN, Barpanda P, Tarascon JM (2011) Structural and electrochemical diversity in LiFe1-δZnδSO4F solid solution: a Fe-based 3.9 V positive-electrode material. Angew Chem Int Ed 50:10584–10588CrossRef Ati M, Melot BC, Rousse G, Chotard JN, Barpanda P, Tarascon JM (2011) Structural and electrochemical diversity in LiFe1-δZnδSO4F solid solution: a Fe-based 3.9 V positive-electrode material. Angew Chem Int Ed 50:10584–10588CrossRef
104.
Zurück zum Zitat Ramzan M, Lebegue S, Kang TW, Ahuja R (2011) Hybrid density functional calculations and molecular dynamics study of lithium fluorosulphate, a cathode material for lithium-ion batteries. J Phys Chem C 115:2600–2603CrossRef Ramzan M, Lebegue S, Kang TW, Ahuja R (2011) Hybrid density functional calculations and molecular dynamics study of lithium fluorosulphate, a cathode material for lithium-ion batteries. J Phys Chem C 115:2600–2603CrossRef
105.
Zurück zum Zitat Liu L, Zhang B, Huang XJ (2011) A 3.9 V polyanion-type cathode material for Li-ion batteries. Prog Nat Sci Mater Int 21:211–215CrossRef Liu L, Zhang B, Huang XJ (2011) A 3.9 V polyanion-type cathode material for Li-ion batteries. Prog Nat Sci Mater Int 21:211–215CrossRef
106.
Zurück zum Zitat Tripath R, Gardiner GR, Islam MS, Nazar LF (2011) Alkali-ion conduction paths in LiFeSO4F and NaFeSO4F tavorite-type cathode materials. Chem Mater 23:2284–2288 Tripath R, Gardiner GR, Islam MS, Nazar LF (2011) Alkali-ion conduction paths in LiFeSO4F and NaFeSO4F tavorite-type cathode materials. Chem Mater 23:2284–2288
107.
Zurück zum Zitat Ati M, Melot BC, Chotard JN, Rousse G, Reynaud M, Tarascon JM (2011) Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure. Electrochem Commun 13:1280–1283CrossRef Ati M, Melot BC, Chotard JN, Rousse G, Reynaud M, Tarascon JM (2011) Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure. Electrochem Commun 13:1280–1283CrossRef
108.
Zurück zum Zitat Melot BC, Rousse G, Chotard JN, Ati M, Rodríguez-Carvajal J, Kemei MC, Tarascon JM (2011) Magnetic structure and properties of the Li-ion battery materials FeSO4F and LiFeSO4F. Chem Mater 23:2922–2930CrossRef Melot BC, Rousse G, Chotard JN, Ati M, Rodríguez-Carvajal J, Kemei MC, Tarascon JM (2011) Magnetic structure and properties of the Li-ion battery materials FeSO4F and LiFeSO4F. Chem Mater 23:2922–2930CrossRef
109.
Zurück zum Zitat Tripathi R, Popov G, Ellis BL, Huq A, Nazar LF (2012) Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering. Energ Environ Sci 5:6238–6246CrossRef Tripathi R, Popov G, Ellis BL, Huq A, Nazar LF (2012) Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering. Energ Environ Sci 5:6238–6246CrossRef
110.
Zurück zum Zitat Ati M, Sathiya M, Boulineau S, Reynaud M, Abakumov A, Rousse G, Melot B, Van Tendeloo G, Tarascon JM (2012) Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode. J Am Chem Soc 134:18380–18388CrossRef Ati M, Sathiya M, Boulineau S, Reynaud M, Abakumov A, Rousse G, Melot B, Van Tendeloo G, Tarascon JM (2012) Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode. J Am Chem Soc 134:18380–18388CrossRef
111.
Zurück zum Zitat Ati M, Sougrati MT, Rousse G, Recham N, Doublet ML, Jumas JC, Tarascon JM (2012) Single-step synthesis of FeSO4F1-yOHy (0 < y < 1) positive electrodes for Li-based batteries. Chem Mater 24:1482–1485CrossRef Ati M, Sougrati MT, Rousse G, Recham N, Doublet ML, Jumas JC, Tarascon JM (2012) Single-step synthesis of FeSO4F1-yOHy (0 < y < 1) positive electrodes for Li-based batteries. Chem Mater 24:1482–1485CrossRef
112.
Zurück zum Zitat Recham N, Rousse G, Sougrati MT, Chotard JN, Frayret C, Mariyappan S, Melot BC, Jumas JC, Tarascon JM (2012) Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem Mater 24:4363–4380CrossRef Recham N, Rousse G, Sougrati MT, Chotard JN, Frayret C, Mariyappan S, Melot BC, Jumas JC, Tarascon JM (2012) Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem Mater 24:4363–4380CrossRef
113.
Zurück zum Zitat Ben-Yahia M, Lemoigno F, Rousse G, Boucher F, Tarascon JM, Doublet ML (2012) Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries. Energ Environ Sci 5:9584–9594CrossRef Ben-Yahia M, Lemoigno F, Rousse G, Boucher F, Tarascon JM, Doublet ML (2012) Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries. Energ Environ Sci 5:9584–9594CrossRef
114.
Zurück zum Zitat Radha AV, Furman JD, Ati M, Melot BC, Tarascon JM, Navrotsky A (2012) Understanding the stability of fluorosulfate Li-ion battery cathode materials: a thermochemical study of LiFe1−x Mn x SO4F (0 ≤ x ≤ 1) polymorphs. J Mater Chem 22:2446–2452CrossRef Radha AV, Furman JD, Ati M, Melot BC, Tarascon JM, Navrotsky A (2012) Understanding the stability of fluorosulfate Li-ion battery cathode materials: a thermochemical study of LiFe1−x Mn x SO4F (0 ≤ x ≤ 1) polymorphs. J Mater Chem 22:2446–2452CrossRef
115.
Zurück zum Zitat Barpanda B, Dedryvère R, Deschamps MP, Delacourt C, Reynaud M, Yamada A, Tarascon JM (2012) Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting. J Solid State Electrochem 16:1843–1851CrossRef Barpanda B, Dedryvère R, Deschamps MP, Delacourt C, Reynaud M, Yamada A, Tarascon JM (2012) Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting. J Solid State Electrochem 16:1843–1851CrossRef
116.
Zurück zum Zitat Tripathi R (2013) Novel high voltage electrodes for Li-ion batteries. PhD thesis, Univ. of Waterloo, Ontario, Canada Tripathi R (2013) Novel high voltage electrodes for Li-ion batteries. PhD thesis, Univ. of Waterloo, Ontario, Canada
117.
Zurück zum Zitat Sobkowiak A, Roberts MR, Younesi R, Ericsson T, Häggström L, Tai CW, Andersson AM, Edström K, Gustafsson T, Björefors F (2013) Understanding and controlling the surface chemistry of LiFeSO4F for an enhanced cathode functionality. Chem Mater 25:3020–3029CrossRef Sobkowiak A, Roberts MR, Younesi R, Ericsson T, Häggström L, Tai CW, Andersson AM, Edström K, Gustafsson T, Björefors F (2013) Understanding and controlling the surface chemistry of LiFeSO4F for an enhanced cathode functionality. Chem Mater 25:3020–3029CrossRef
118.
Zurück zum Zitat Dong J, Yu X, Sun S, Liu L, Yang X, Huang X (2013) Triplite LiFeSO4F as cathode material for Li-ion batteries. J Power Sourc 244:816–820 Dong J, Yu X, Sun S, Liu L, Yang X, Huang X (2013) Triplite LiFeSO4F as cathode material for Li-ion batteries. J Power Sourc 244:816–820
119.
Zurück zum Zitat Rousse G, Tarascon JM (2014) Sulfate-based polyanionic compounds for Li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects. Chem Mater 26:394–406CrossRef Rousse G, Tarascon JM (2014) Sulfate-based polyanionic compounds for Li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects. Chem Mater 26:394–406CrossRef
120.
Zurück zum Zitat Tripathi R, Popov G, Sun X, Ryan DH, Nazar LF (2013) Ultra-rapid microwave synthesis of triplite LiFeSO4F. J Mater Chem A 1:2990–2994CrossRef Tripathi R, Popov G, Sun X, Ryan DH, Nazar LF (2013) Ultra-rapid microwave synthesis of triplite LiFeSO4F. J Mater Chem A 1:2990–2994CrossRef
121.
Zurück zum Zitat Kim H, Lee S, Park YU, Kim H, Kim J, Jeon S, Kang K (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2-xMP2O8 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3938CrossRef Kim H, Lee S, Park YU, Kim H, Kim J, Jeon S, Kang K (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2-xMP2O8 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3938CrossRef
122.
Zurück zum Zitat Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Groult H, Julien CM (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sourc 216:192–200CrossRef Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Groult H, Julien CM (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sourc 216:192–200CrossRef
Metadaten
Titel
Fluoro-polyanionic Compounds
verfasst von
Christian Julien
Alain Mauger
Ashok Vijh
Karim Zaghib
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-19108-9_8