Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2022

09.06.2022 | Technical Article

Flux-Cored Wire for Arc Additive Manufacturing of Alloy Steel: Effect of Inclusion Particles on Microstructure and Properties

verfasst von: Min Zhang, Shuai Xu, Qiaoling Chu, Boyu Wang, Lisheng Zhang, Xiaoyu He, Xiongwei Tong, Lin Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wire and arc additive manufacturing technology is an efficient manufacturing method to realize rapid prototyping of complex parts. Unlike most recent researches which mainly focus on the manufacturing process and equipment, this paper reports the findings of experiments in which the self-developed flux-cored wire is used for arc additive manufacturing of alloy steel. It studies the effects of the contents of inclusions forming elements Ti and Mn on the microstructure and properties of wall parts, and discusses the microstructure evolution in the manufacturing process. It is discovered that the grain size of alloy steel parts manufactured by arc additive is affected by the number of heterogeneous nucleation cores dominated by inclusions in the molten pool, resulting in changed performance of the samples. During the manufacturing process, different sections of the samples experience different thermal cycles. The central region of the sample is heated and tempered, the microstructure change from granular bainite and acicular ferrite into tempered bainite and massive ferrite, and its hardness decrease. Furthermore, the electron backscatter diffraction analysis shows that the thermal cycle makes for the recrystallization in the middle region of the sample, but plasticity of the material does not change. The mechanical properties of the samples do not show obvious anisotropy with decrease in the grain size. Therefore, this study is of particularly significance in developing raw materials for arc additive manufacturing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.A. Rodrigues, V. Duarte, R.M. Miranda, T.G. Santos, and J.P. Oliveira, Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM), Materials, 2019, 12(7), p 1121.CrossRef T.A. Rodrigues, V. Duarte, R.M. Miranda, T.G. Santos, and J.P. Oliveira, Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM), Materials, 2019, 12(7), p 1121.CrossRef
2.
Zurück zum Zitat J. C Najmon, S. Raeisi, and A. Tovar. Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry. Additive Manufacturing for the Aerospace Industry 7-31 (2019). J. C Najmon, S. Raeisi, and A. Tovar. Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry. Additive Manufacturing for the Aerospace Industry 7-31 (2019).
3.
Zurück zum Zitat A. Suárez, E. Aldalur, F. Veiga, T. Artaza, I. Tabernero, and A. Lamikiz, Wire arc Additive Manufacturing of an Aeronautic Fitting with Different Metal Alloys: From the Design to the Part, J. Manuf. Process., 2021, 64, p 188-197.CrossRef A. Suárez, E. Aldalur, F. Veiga, T. Artaza, I. Tabernero, and A. Lamikiz, Wire arc Additive Manufacturing of an Aeronautic Fitting with Different Metal Alloys: From the Design to the Part, J. Manuf. Process., 2021, 64, p 188-197.CrossRef
4.
Zurück zum Zitat Z. Pan, D. Ding, B. Wu, D. Cuiuri, H. Li, and J. Norrish. Arc Welding Processes for Additive Manufacturing: A Review. Transactions on Intelligent Welding Manufacturing 3-24. (2018). Z. Pan, D. Ding, B. Wu, D. Cuiuri, H. Li, and J. Norrish. Arc Welding Processes for Additive Manufacturing: A Review. Transactions on Intelligent Welding Manufacturing 3-24. (2018).
5.
Zurück zum Zitat B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, and J. Norrish, A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement, J. Manuf. Process., 2018, 35, p 127-139.CrossRef B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, and J. Norrish, A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement, J. Manuf. Process., 2018, 35, p 127-139.CrossRef
6.
Zurück zum Zitat D. Ding, Z. Pan, D. Cuiuri, and H. Li, Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests, Int. J. Adv. Manuf. Technol., 2015, 81(1), p 465-481.CrossRef D. Ding, Z. Pan, D. Cuiuri, and H. Li, Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests, Int. J. Adv. Manuf. Technol., 2015, 81(1), p 465-481.CrossRef
7.
Zurück zum Zitat J.L. Prado-Cerqueira, A.M. Camacho, J.L. Diéguez, Á. Rodríguez-Prieto, A.M. Aragón, C. Lorenzo-Martín, and Á. Yanguas-Gil, Analysis of Favorable Process Conditions for the Manufacturing of Thin-Wall Pieces of Mild Steel Obtained by Wire and Arc Additive Manufacturing (WAAM), Materials, 2018, 11(8), p 1449.CrossRef J.L. Prado-Cerqueira, A.M. Camacho, J.L. Diéguez, Á. Rodríguez-Prieto, A.M. Aragón, C. Lorenzo-Martín, and Á. Yanguas-Gil, Analysis of Favorable Process Conditions for the Manufacturing of Thin-Wall Pieces of Mild Steel Obtained by Wire and Arc Additive Manufacturing (WAAM), Materials, 2018, 11(8), p 1449.CrossRef
8.
Zurück zum Zitat C.V. Haden, G. Zeng, F.M. Carter III., C. Ruhl, B.A. Krick, and D.G. Harlow, Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties, Addit. Manuf., 2017, 16, p 115-123. C.V. Haden, G. Zeng, F.M. Carter III., C. Ruhl, B.A. Krick, and D.G. Harlow, Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties, Addit. Manuf., 2017, 16, p 115-123.
9.
Zurück zum Zitat J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, and B. Xu, Microstructural Evolution and Mechanical Property of Ti-6Al-4V Wall Deposited by Continuous Plasma Arc Additive Manufacturing Without Post Heat Treatment, J. Mech. Behave. Biomed. Mater., 2017, 69, p 19-29.CrossRef J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, and B. Xu, Microstructural Evolution and Mechanical Property of Ti-6Al-4V Wall Deposited by Continuous Plasma Arc Additive Manufacturing Without Post Heat Treatment, J. Mech. Behave. Biomed. Mater., 2017, 69, p 19-29.CrossRef
10.
Zurück zum Zitat M. Dinovitzer, X. Chen, J. Laliberte, X. Huang, and H. Frei, Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure, Addit. Manuf., 2019, 26, p 138-146. M. Dinovitzer, X. Chen, J. Laliberte, X. Huang, and H. Frei, Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure, Addit. Manuf., 2019, 26, p 138-146.
11.
Zurück zum Zitat P. Kazanas, P. Deherkar, P. Almeida, H. Lockett, and S. Williams, Fabrication of Geometrical Features Using Wire and Arc Additive Manufacture, Proceed. Inst. Mech. Eng., 2012, 226(6), p 1042-1051. CrossRef P. Kazanas, P. Deherkar, P. Almeida, H. Lockett, and S. Williams, Fabrication of Geometrical Features Using Wire and Arc Additive Manufacture, Proceed. Inst. Mech. Eng., 2012, 226(6), p 1042-1051. CrossRef
12.
Zurück zum Zitat J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46, p 151-186.CrossRef J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46, p 151-186.CrossRef
13.
Zurück zum Zitat M. Liberini, A. Astarita, G. Campatelli, A. Scippa, F. Montevecchi, G. Venturini, M. Durante, L. Boccarusso, F.M. Minutolo, and A. Squillace, Selection of Optimal Process Parameters for Wire Arc Additive Manufacturing, Procedia CIRP, 2017, 62, p 470-474.CrossRef M. Liberini, A. Astarita, G. Campatelli, A. Scippa, F. Montevecchi, G. Venturini, M. Durante, L. Boccarusso, F.M. Minutolo, and A. Squillace, Selection of Optimal Process Parameters for Wire Arc Additive Manufacturing, Procedia CIRP, 2017, 62, p 470-474.CrossRef
14.
Zurück zum Zitat V.V. Pogorelko, and A.E. Mayer, Tensile Strength of Al Matrix with Nanoscale Cu, Ti and Mg Inclusions, J. Phys. Conf. Ser., 2016, 774(1), p 012034.CrossRef V.V. Pogorelko, and A.E. Mayer, Tensile Strength of Al Matrix with Nanoscale Cu, Ti and Mg Inclusions, J. Phys. Conf. Ser., 2016, 774(1), p 012034.CrossRef
15.
Zurück zum Zitat W. Ou, T. Mukherjee, G.L. Knapp, Y. Wei, and T. DebRoy, Fusion Zone Geometries, Cooling Rates and Solidification Parameters During Wire Arc Additive Manufacturing, Intern. J. Heat Mass Transf., 2018, 127, p 1084-1094.CrossRef W. Ou, T. Mukherjee, G.L. Knapp, Y. Wei, and T. DebRoy, Fusion Zone Geometries, Cooling Rates and Solidification Parameters During Wire Arc Additive Manufacturing, Intern. J. Heat Mass Transf., 2018, 127, p 1084-1094.CrossRef
16.
Zurück zum Zitat J. Xiong, Y. Li, R. Li, and Z. Yin, Influences of Process Parameters on Surface Roughness of Multi-Layer Single-Pass Thin-Walled Parts in GMAW-Based Additive Manufacturing, J. Mater. Process. Technol., 2018, 252, p 128-136.CrossRef J. Xiong, Y. Li, R. Li, and Z. Yin, Influences of Process Parameters on Surface Roughness of Multi-Layer Single-Pass Thin-Walled Parts in GMAW-Based Additive Manufacturing, J. Mater. Process. Technol., 2018, 252, p 128-136.CrossRef
17.
Zurück zum Zitat T. Wang, Y. Zhang, Z. Wu, and C. Shi, Microstructure and Properties of Die Steel Fabricated by WAAM Using H13 Wire, Vacuum, 2018, 149, p 185-189.CrossRef T. Wang, Y. Zhang, Z. Wu, and C. Shi, Microstructure and Properties of Die Steel Fabricated by WAAM Using H13 Wire, Vacuum, 2018, 149, p 185-189.CrossRef
18.
Zurück zum Zitat P. Dirisu, S. Ganguly, A. Mehmanparast, F. Martina, and S. Williams, Analysis of Fracture Toughness Properties of Wire+ Arc Additive Manufactured High Strength Low Alloy Structural Steel Components, Mater. Sci. Eng. A, 2019, 765, p 138-285.CrossRef P. Dirisu, S. Ganguly, A. Mehmanparast, F. Martina, and S. Williams, Analysis of Fracture Toughness Properties of Wire+ Arc Additive Manufactured High Strength Low Alloy Structural Steel Components, Mater. Sci. Eng. A, 2019, 765, p 138-285.CrossRef
19.
Zurück zum Zitat L. Sun, F. Jiang, R. Huang, D. Yuan, C. Guo, and J. Wang, Microstructure and Mechanical Properties of Low-Carbon High-Strength Steel Fabricated by Wire and Arc Additive Manufacturing, Metals, 2020, 10(2), p 216.CrossRef L. Sun, F. Jiang, R. Huang, D. Yuan, C. Guo, and J. Wang, Microstructure and Mechanical Properties of Low-Carbon High-Strength Steel Fabricated by Wire and Arc Additive Manufacturing, Metals, 2020, 10(2), p 216.CrossRef
20.
Zurück zum Zitat A.S. Yildiz, K. Davut, B. Koc, and O. Yilmaz, Wire Arc Additive Manufacturing of High-Strength Low Alloy Steels: Study of Process Parameters and their Influence on the Bead Geometry and Mechanical Characteristics, Inter. J. Adv. Manuf. Technol., 2020, 108(11), p 3391-3404.CrossRef A.S. Yildiz, K. Davut, B. Koc, and O. Yilmaz, Wire Arc Additive Manufacturing of High-Strength Low Alloy Steels: Study of Process Parameters and their Influence on the Bead Geometry and Mechanical Characteristics, Inter. J. Adv. Manuf. Technol., 2020, 108(11), p 3391-3404.CrossRef
21.
Zurück zum Zitat B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, and Z. Fei, The Effects of Forced Interpass Cooling on the Material Properties of Wire Arc Additively Manufactured Ti6Al4V Alloy, J. Mater. Process. Technol., 2018, 258, p 97-105.CrossRef B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, and Z. Fei, The Effects of Forced Interpass Cooling on the Material Properties of Wire Arc Additively Manufactured Ti6Al4V Alloy, J. Mater. Process. Technol., 2018, 258, p 97-105.CrossRef
22.
Zurück zum Zitat X. Wang, C.H. Zhang, X. Cui, S. Zhang, J. Chen, and J.B. Zhang, Microstructure and Mechanical Behavior of Additive Manufactured Cr-Ni-V Low Alloy Steel in Different Heat Treatment, Vacuum, 2020, 175, p 109-216.CrossRef X. Wang, C.H. Zhang, X. Cui, S. Zhang, J. Chen, and J.B. Zhang, Microstructure and Mechanical Behavior of Additive Manufactured Cr-Ni-V Low Alloy Steel in Different Heat Treatment, Vacuum, 2020, 175, p 109-216.CrossRef
23.
Zurück zum Zitat Y. Ali, P. Henckell, J. Hildebrand, J. Reimann, J.P. Bergmann, and S. Barnikol-Oettler, Wire Arc Additive Manufacturing of Hot Work Tool Steel with CMT Process, J. Mater. Process. Technol., 2019, 269, p 109-116.CrossRef Y. Ali, P. Henckell, J. Hildebrand, J. Reimann, J.P. Bergmann, and S. Barnikol-Oettler, Wire Arc Additive Manufacturing of Hot Work Tool Steel with CMT Process, J. Mater. Process. Technol., 2019, 269, p 109-116.CrossRef
24.
Zurück zum Zitat J.A. Avila, J. Rodriguez, and P.R. Mei, Ramirez AJ Microstructure and Fracture Toughness of Multipass Friction Stir Welded Joints of API-5L-X80 Steel Plates, Mater. Sci. Eng. A, 2016, 673, p 257-265.CrossRef J.A. Avila, J. Rodriguez, and P.R. Mei, Ramirez AJ Microstructure and Fracture Toughness of Multipass Friction Stir Welded Joints of API-5L-X80 Steel Plates, Mater. Sci. Eng. A, 2016, 673, p 257-265.CrossRef
25.
Zurück zum Zitat S.W. Thompson, D.J.V. Col, and G. Krauss, Continuous Cooling Transformations and Microstructures in a Low-Carbon, High-Strength Low-Alloy Plate Steel, Metall. Trans. A, 1990, 21(6), p 1493-1507.CrossRef S.W. Thompson, D.J.V. Col, and G. Krauss, Continuous Cooling Transformations and Microstructures in a Low-Carbon, High-Strength Low-Alloy Plate Steel, Metall. Trans. A, 1990, 21(6), p 1493-1507.CrossRef
26.
Zurück zum Zitat P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian, and H.L. Fraser, Microstructural Control of Additively Manufactured Metallic Materials, Annu. Rev. Mater. Res., 2016, 46, p 63-91.CrossRef P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian, and H.L. Fraser, Microstructural Control of Additively Manufactured Metallic Materials, Annu. Rev. Mater. Res., 2016, 46, p 63-91.CrossRef
27.
Zurück zum Zitat J. Liu, R.L. Davidchack and H.B. Dong, Molecular Dynamics Calculation of Solid-Liquid Interfacial Free Energy and its Anisotropy During Iron Solidification, Comput. Mater. Sci., 2013, 74, p 92-100.CrossRef J. Liu, R.L. Davidchack and H.B. Dong, Molecular Dynamics Calculation of Solid-Liquid Interfacial Free Energy and its Anisotropy During Iron Solidification, Comput. Mater. Sci., 2013, 74, p 92-100.CrossRef
28.
Zurück zum Zitat L. Thijs, M.L. Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, and J. Van Humbeeck, Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Mater., 2013, 61(12), p 4657-4668.CrossRef L. Thijs, M.L. Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, and J. Van Humbeeck, Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Mater., 2013, 61(12), p 4657-4668.CrossRef
29.
Zurück zum Zitat E. Bagherpour, F. Qods, R. Ebrahimi, and H. Miyamoto, Microstructure and Texture Inhomogeneity After Large Non-Monotonic Simple Shear Strains: Achievements of Tensile Properties, Metals, 2018, 8(8), p 583.CrossRef E. Bagherpour, F. Qods, R. Ebrahimi, and H. Miyamoto, Microstructure and Texture Inhomogeneity After Large Non-Monotonic Simple Shear Strains: Achievements of Tensile Properties, Metals, 2018, 8(8), p 583.CrossRef
30.
Zurück zum Zitat J. Lu, X. Wu, Z. Liu, X. Chen, B. Xu, Z. Wu, and S. Ruan, Microstructure and Mechanical Properties of Ultrafinegrained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing, Metal. Mater. Trans. A, 2016, 47, p 4648-4658.CrossRef J. Lu, X. Wu, Z. Liu, X. Chen, B. Xu, Z. Wu, and S. Ruan, Microstructure and Mechanical Properties of Ultrafinegrained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing, Metal. Mater. Trans. A, 2016, 47, p 4648-4658.CrossRef
Metadaten
Titel
Flux-Cored Wire for Arc Additive Manufacturing of Alloy Steel: Effect of Inclusion Particles on Microstructure and Properties
verfasst von
Min Zhang
Shuai Xu
Qiaoling Chu
Boyu Wang
Lisheng Zhang
Xiaoyu He
Xiongwei Tong
Lin Zhang
Publikationsdatum
09.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06973-4

Weitere Artikel der Ausgabe 11/2022

Journal of Materials Engineering and Performance 11/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.