Skip to main content
Erschienen in: Meccanica 4/2022

15.05.2021

Fractional order models for the homogenization and wave propagation analysis in periodic elastic beams

verfasst von: Sansit Patnaik, John P. Hollkamp, Sai Sidhardh, Fabio Semperlotti

Erschienen in: Meccanica | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The advancement of manufacturing techniques has led to a rapid increase in the design and fabrication of periodic and architectured materials for a variety of dynamics and wave manipulation applications. Classical low-frequency homogenization techniques have been popular and invaluable tools to facilitate the numerical simulation of these systems, although their application is naturally limited to the long-wavelength regime. As a result, scattering dominated features, such as the occurrence of frequency band-gaps, cannot be captured by these models. Indeed, the first band-gap typically marks the approximate limit of validity of low-frequency homogenization approaches. Abandoning the use of this approach allows recovering the detailed dynamic behavior due to the geometric features of the periodic units, but it also comes at a significant increase in computational cost. In this study, we leverage the use of fractional operators to revisit the classical low-frequency homogenization approaches and explore their possible extension beyond the initial band-pass (low-frequency) regime. Remarkably, the resulting fractional-order homogenization approach is capable of representing the dynamic behavior of periodic structures within the first few frequency band-gaps. In particular, we apply the fractional approach to model elastic wave propagation in a bi-material periodic beam which serves as an idealization of a one-dimensional elastic metamaterial. The use of the fractional operator formalism allows casting the classical integer-order wave equation with spatially-variable coefficients, typical of an inhomogeneous beam, into a fractional-order differential equation with constant coefficients. Thus, the spatial heterogeneity of the periodic system is accounted for via the order of the fractional derivative. The fractional-order governing equation is obtained via variational principles, starting from fractional-order kinematic relations. It is found that the resulting fractional differential model of the heterogeneous system has, in its most general form, a complex valued and frequency-dependent order. The results from the fractional order model are compared with those obtained from the classical wave equation in order to assess the validity of the approach and its performance. The dynamic analysis is carried out at both band-gap and band-pass regimes showing a good agreement with results from traditional methodologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ao X, Chan CT (2008) Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys Rev E 77:025601CrossRef Ao X, Chan CT (2008) Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys Rev E 77:025601CrossRef
2.
Zurück zum Zitat Zhang S, Xia C, Fang N (2011) Broadband acoustic cloak for ultrasound waves. Phys Rev Lett 106:024301CrossRef Zhang S, Xia C, Fang N (2011) Broadband acoustic cloak for ultrasound waves. Phys Rev Lett 106:024301CrossRef
3.
Zurück zum Zitat Zhu H, Semperlotti F (2013) Metamaterial based embedded acoustic filters for structural applications. AIP Adv 3:092121CrossRef Zhu H, Semperlotti F (2013) Metamaterial based embedded acoustic filters for structural applications. AIP Adv 3:092121CrossRef
4.
Zurück zum Zitat Zhu H, Semperlotti F (2015) Phononic thin plates with embedded acoustic black holes. Phys Rev B 91:104304CrossRef Zhu H, Semperlotti F (2015) Phononic thin plates with embedded acoustic black holes. Phys Rev B 91:104304CrossRef
5.
Zurück zum Zitat Zhu H, Patnaik S, Walsh TF, Jared BH, Semperlotti F (2020) Nonlocal elastic metasurfaces: enabling broadband wave control via intentional nonlocality. Proc Natl Acad Sci 117:26099–26108CrossRef Zhu H, Patnaik S, Walsh TF, Jared BH, Semperlotti F (2020) Nonlocal elastic metasurfaces: enabling broadband wave control via intentional nonlocality. Proc Natl Acad Sci 117:26099–26108CrossRef
6.
Zurück zum Zitat Bostani A, Webb JP (2011) A model-order reduction method for the passband and stopband characteristics of periodic structures. In: 2011 41st European microwave conference. IEEE, pp 167–170 Bostani A, Webb JP (2011) A model-order reduction method for the passband and stopband characteristics of periodic structures. In: 2011 41st European microwave conference. IEEE, pp 167–170
7.
Zurück zum Zitat Bostani A, Webb JP (2012) Finite-element eigenvalue analysis of propagating and evanescent modes in 3-d periodic structures using model-order reduction. IEEE Trans Microw Theory Tech 60:2677–2683CrossRef Bostani A, Webb JP (2012) Finite-element eigenvalue analysis of propagating and evanescent modes in 3-d periodic structures using model-order reduction. IEEE Trans Microw Theory Tech 60:2677–2683CrossRef
8.
Zurück zum Zitat Navarro EA, Gimeno B, Cruz JL (1993) Modelling of periodic structures using the finite difference time domain method combined with the floquet theorem. Electron Lett 29:446–447CrossRef Navarro EA, Gimeno B, Cruz JL (1993) Modelling of periodic structures using the finite difference time domain method combined with the floquet theorem. Electron Lett 29:446–447CrossRef
9.
Zurück zum Zitat Sigalas MM, Garcıa N (2000) Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J Appl Phys 87:3122–3125CrossRef Sigalas MM, Garcıa N (2000) Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J Appl Phys 87:3122–3125CrossRef
10.
Zurück zum Zitat Cheng ZB, Xu YG, Zhang LL (2015) Analysis of flexural wave bandgaps in periodic plate structures using differential quadrature element method. Int J Mech Sci 100:112–125CrossRef Cheng ZB, Xu YG, Zhang LL (2015) Analysis of flexural wave bandgaps in periodic plate structures using differential quadrature element method. Int J Mech Sci 100:112–125CrossRef
11.
Zurück zum Zitat Cheng ZB, Shi ZF, Mo YL (2018) Complex dispersion relations and evanescent waves in periodic beams via the extended differential quadrature method. Compos Struct 187:122–136CrossRef Cheng ZB, Shi ZF, Mo YL (2018) Complex dispersion relations and evanescent waves in periodic beams via the extended differential quadrature method. Compos Struct 187:122–136CrossRef
12.
13.
Zurück zum Zitat Duhamel D, Mace BR, Brennan MJ (2006) Finite element analysis of the vibrations of waveguides and periodic structures. J Sound Vib 294:205–220CrossRef Duhamel D, Mace BR, Brennan MJ (2006) Finite element analysis of the vibrations of waveguides and periodic structures. J Sound Vib 294:205–220CrossRef
14.
Zurück zum Zitat Cao Y, Hou Z, Liu Y (2004) Convergence problem of plane-wave expansion method for phononic crystals. Phys Lett A 327:247–253MATHCrossRef Cao Y, Hou Z, Liu Y (2004) Convergence problem of plane-wave expansion method for phononic crystals. Phys Lett A 327:247–253MATHCrossRef
15.
Zurück zum Zitat Shi S, Chen C, Prather DW (2004) Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. JOSA A 21:1769–1775CrossRef Shi S, Chen C, Prather DW (2004) Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. JOSA A 21:1769–1775CrossRef
16.
Zurück zum Zitat Yu W, Tang T (2007) Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int J Solids Struct 44:3738–3755MathSciNetMATHCrossRef Yu W, Tang T (2007) Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int J Solids Struct 44:3738–3755MathSciNetMATHCrossRef
17.
Zurück zum Zitat Craster RV, Kaplunov J, Pichugin AV (2010) High-frequency homogenization for periodic media. Proc R Soc A Math Phys Eng Sci 466:2341–2362MathSciNetMATH Craster RV, Kaplunov J, Pichugin AV (2010) High-frequency homogenization for periodic media. Proc R Soc A Math Phys Eng Sci 466:2341–2362MathSciNetMATH
18.
Zurück zum Zitat Antonakakis T, Craster RV, Guenneau S (2013) High-frequency homogenization of zero-frequency stop band photonic and phononic crystals. New J Phys 15:103014CrossRef Antonakakis T, Craster RV, Guenneau S (2013) High-frequency homogenization of zero-frequency stop band photonic and phononic crystals. New J Phys 15:103014CrossRef
19.
Zurück zum Zitat Manevitch LI, Andrianov IV, Oshmyan VG (2013) Mechanics of periodically heterogeneous structures. Springer, BerlinMATH Manevitch LI, Andrianov IV, Oshmyan VG (2013) Mechanics of periodically heterogeneous structures. Springer, BerlinMATH
20.
Zurück zum Zitat Yang M, Ma G, Wu Y, Yang Z, Sheng P (2014) Homogenization scheme for acoustic metamaterials. Phys Rev B 89:064309CrossRef Yang M, Ma G, Wu Y, Yang Z, Sheng P (2014) Homogenization scheme for acoustic metamaterials. Phys Rev B 89:064309CrossRef
21.
Zurück zum Zitat Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, AmsterdamMATH Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, AmsterdamMATH
22.
Zurück zum Zitat Chatterjee A (2005) Statistical origins of fractional derivatives in viscoelasticity. J Sound Vib 284:1239–1245CrossRef Chatterjee A (2005) Statistical origins of fractional derivatives in viscoelasticity. J Sound Vib 284:1239–1245CrossRef
23.
24.
Zurück zum Zitat Hollkamp JP, Sen M, Semperlotti F (2018) Model-order reduction of lumped parameter systems via fractional calculus. J Sound Vib 419:526–543CrossRef Hollkamp JP, Sen M, Semperlotti F (2018) Model-order reduction of lumped parameter systems via fractional calculus. J Sound Vib 419:526–543CrossRef
25.
Zurück zum Zitat Patnaik S, Sidhardh S, Semperlotti F (2021) Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int J Mech Sci 189:105992MATHCrossRef Patnaik S, Sidhardh S, Semperlotti F (2021) Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int J Mech Sci 189:105992MATHCrossRef
26.
Zurück zum Zitat Patnaik S, Sidhardh S, Semperlotti F (2020) Fractional-order models for the static and dynamic analysis of nonlocal plates. Commun Nonlinear Sci Numer Simul 95:105601MathSciNetMATHCrossRef Patnaik S, Sidhardh S, Semperlotti F (2020) Fractional-order models for the static and dynamic analysis of nonlocal plates. Commun Nonlinear Sci Numer Simul 95:105601MathSciNetMATHCrossRef
27.
Zurück zum Zitat Patnaik S, Sidhardh S, Semperlotti F (2020) Geometrically nonlinear analysis of nonlocal plates using fractional calculus. Int J Mech Sci 179:105710CrossRef Patnaik S, Sidhardh S, Semperlotti F (2020) Geometrically nonlinear analysis of nonlocal plates using fractional calculus. Int J Mech Sci 179:105710CrossRef
28.
Zurück zum Zitat Sidhardh S, Patnaik S, Semperlotti F (2020) Geometrically nonlinear response of a fractional-order nonlocal model of elasticity. Int J Nonlinear Mech 125:103529CrossRef Sidhardh S, Patnaik S, Semperlotti F (2020) Geometrically nonlinear response of a fractional-order nonlocal model of elasticity. Int J Nonlinear Mech 125:103529CrossRef
30.
Zurück zum Zitat Carpinteri A, Cornetti P, Sapora A (2011) A fractional calculus approach to nonlocal elasticity. Eur Phys J Spec Top 193:193MATHCrossRef Carpinteri A, Cornetti P, Sapora A (2011) A fractional calculus approach to nonlocal elasticity. Eur Phys J Spec Top 193:193MATHCrossRef
32.
Zurück zum Zitat Di Paola M, Failla G, Pirrotta A, Sofi A, Zingales M (2013) The mechanically based non-local elasticity: an overview of main results and future challenges. Philos Trans R Soc A Math Phys Eng Sci 371:20120433MathSciNetMATHCrossRef Di Paola M, Failla G, Pirrotta A, Sofi A, Zingales M (2013) The mechanically based non-local elasticity: an overview of main results and future challenges. Philos Trans R Soc A Math Phys Eng Sci 371:20120433MathSciNetMATHCrossRef
33.
Zurück zum Zitat Sumelka W, Blaszczyk T (2014) Fractional continua for linear elasticity. Arch Mech 66:147–172MathSciNetMATH Sumelka W, Blaszczyk T (2014) Fractional continua for linear elasticity. Arch Mech 66:147–172MathSciNetMATH
34.
Zurück zum Zitat Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur J Mech A Solids 54:243–251MathSciNetMATHCrossRef Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur J Mech A Solids 54:243–251MathSciNetMATHCrossRef
35.
Zurück zum Zitat Alotta G, Failla G, Zingales M (2017) Finite-element formulation of a nonlocal hereditary fractional-order Timoshenko beam. J Eng Mech 143:D4015001 Alotta G, Failla G, Zingales M (2017) Finite-element formulation of a nonlocal hereditary fractional-order Timoshenko beam. J Eng Mech 143:D4015001
36.
Zurück zum Zitat Szajek K, Sumelka W, Bekus K, Blaszczyk T (2021) Designing of dynamic spectrum shifting in terms of non-local space-fractional mechanics. Energies 14:506CrossRef Szajek K, Sumelka W, Bekus K, Blaszczyk T (2021) Designing of dynamic spectrum shifting in terms of non-local space-fractional mechanics. Energies 14:506CrossRef
37.
Zurück zum Zitat Zingales M, Failla G (2015) The finite element method for fractional non-local thermal energy transfer in non-homogeneous rigid conductors. Commun Nonlinear Sci Numer Simul 29:116–127MathSciNetMATHCrossRef Zingales M, Failla G (2015) The finite element method for fractional non-local thermal energy transfer in non-homogeneous rigid conductors. Commun Nonlinear Sci Numer Simul 29:116–127MathSciNetMATHCrossRef
38.
Zurück zum Zitat Hollkamp JP, Sen M, Semperlotti F (2019) Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation. J Sound Vib 441:204–220CrossRef Hollkamp JP, Sen M, Semperlotti F (2019) Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation. J Sound Vib 441:204–220CrossRef
39.
Zurück zum Zitat Hollkamp JP, Semperlotti F (2020) Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. J Sound Vib 465:115035CrossRef Hollkamp JP, Semperlotti F (2020) Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. J Sound Vib 465:115035CrossRef
40.
Zurück zum Zitat Szajek K, Sumelka W (2019) Discrete mass-spring structure identification in nonlocal continuum space-fractional model. Eur Phys J Plus 134:1–19CrossRef Szajek K, Sumelka W (2019) Discrete mass-spring structure identification in nonlocal continuum space-fractional model. Eur Phys J Plus 134:1–19CrossRef
41.
Zurück zum Zitat Patnaik S, Semperlotti F (2020) A generalized fractional-order elastodynamic theory for non-local attenuating media. Proc R Soc A 476:20200200MathSciNetMATHCrossRef Patnaik S, Semperlotti F (2020) A generalized fractional-order elastodynamic theory for non-local attenuating media. Proc R Soc A 476:20200200MathSciNetMATHCrossRef
42.
Zurück zum Zitat Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36:1403–1412CrossRef Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36:1403–1412CrossRef
43.
Zurück zum Zitat Fellah ZEA, Chapelon JY, Berger S, Lauriks W, Depollier C (2004) Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J Acoust Soc Am 116:61–73CrossRef Fellah ZEA, Chapelon JY, Berger S, Lauriks W, Depollier C (2004) Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J Acoust Soc Am 116:61–73CrossRef
44.
Zurück zum Zitat Meerschaert MM, McGough RJ (2014) Attenuated fractional wave equations with anisotropy. J Vib Acoust 136:050902CrossRef Meerschaert MM, McGough RJ (2014) Attenuated fractional wave equations with anisotropy. J Vib Acoust 136:050902CrossRef
45.
Zurück zum Zitat Buonocore S, Sen M, Semperlotti F (2019) Occurrence of anomalous diffusion and non-local response in highly-scattering acoustic periodic media. New J Phys 21:033011CrossRef Buonocore S, Sen M, Semperlotti F (2019) Occurrence of anomalous diffusion and non-local response in highly-scattering acoustic periodic media. New J Phys 21:033011CrossRef
46.
Zurück zum Zitat Zhang H, Liu F, Anh V (2010) Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl Math Comput 217:2534–2545MathSciNetMATH Zhang H, Liu F, Anh V (2010) Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl Math Comput 217:2534–2545MathSciNetMATH
47.
Zurück zum Zitat Wang H, Yang D, Zhu S (2015) A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput Methods Appl Mech Eng 290:45–56MathSciNetMATHCrossRef Wang H, Yang D, Zhu S (2015) A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput Methods Appl Mech Eng 290:45–56MathSciNetMATHCrossRef
48.
Zurück zum Zitat Patnaik S, Sidhardh S, Semperlotti F (2020) A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int J Solids Struct 202:398–417CrossRef Patnaik S, Sidhardh S, Semperlotti F (2020) A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int J Solids Struct 202:398–417CrossRef
49.
Zurück zum Zitat Reddy JN (2019) An introduction to the finite element method. McGraw-Hill Education, New York Reddy JN (2019) An introduction to the finite element method. McGraw-Hill Education, New York
51.
Zurück zum Zitat Sidhardh S, Patnaik S, Semperlotti F (2021) Thermodynamics of fractional-order nonlocal continua and its application to the thermoelastic response of beams. Eur J Mech A Solids 88:104238MathSciNetMATHCrossRef Sidhardh S, Patnaik S, Semperlotti F (2021) Thermodynamics of fractional-order nonlocal continua and its application to the thermoelastic response of beams. Eur J Mech A Solids 88:104238MathSciNetMATHCrossRef
52.
Zurück zum Zitat Challamel N et al (2014) On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch Appl Mech 84:1275–1292MATHCrossRef Challamel N et al (2014) On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch Appl Mech 84:1275–1292MATHCrossRef
53.
Zurück zum Zitat Lazopoulos KA, Lazopoulos AK (2020) On fractional bending of beams with \(\Lambda\)-fractional derivative. Arch Appl Mech 90:573–584CrossRef Lazopoulos KA, Lazopoulos AK (2020) On fractional bending of beams with \(\Lambda\)-fractional derivative. Arch Appl Mech 90:573–584CrossRef
54.
Zurück zum Zitat Lazopoulos KA, Lazopoulos AK (2020) On plane \(\Lambda\)-fractional linear elasticity theory. Theor Appl Mech Lett 10:270–275CrossRef Lazopoulos KA, Lazopoulos AK (2020) On plane \(\Lambda\)-fractional linear elasticity theory. Theor Appl Mech Lett 10:270–275CrossRef
55.
Zurück zum Zitat Lazopoulos AK, Karaoulanis D (2021) On \(\Lambda\)-fractional viscoelastic models. Axioms 10:22CrossRef Lazopoulos AK, Karaoulanis D (2021) On \(\Lambda\)-fractional viscoelastic models. Axioms 10:22CrossRef
56.
Zurück zum Zitat Makris N, Constantinou MC (1993) Models of viscoelasticity with complex-order derivatives. J Eng Mech 119:1453–1464 Makris N, Constantinou MC (1993) Models of viscoelasticity with complex-order derivatives. J Eng Mech 119:1453–1464
58.
Zurück zum Zitat Luke YL (1969) Special functions and their approximations, vol 2. Academic Press, New YorkMATH Luke YL (1969) Special functions and their approximations, vol 2. Academic Press, New YorkMATH
59.
Zurück zum Zitat Andersen L, Nielsen SRK, Kirkegaard PH (2001) Finite element modelling of infinite Euler beams on kelvin foundations exposed to moving loads in convected co-ordinates. J Sound Vib 241:587–604MATHCrossRef Andersen L, Nielsen SRK, Kirkegaard PH (2001) Finite element modelling of infinite Euler beams on kelvin foundations exposed to moving loads in convected co-ordinates. J Sound Vib 241:587–604MATHCrossRef
60.
Zurück zum Zitat Jokar M, Patnaik S, Semperlotti F (2020) Variable-order approach to nonlocal elasticity: Theoretical formulation and order identification via deep learning techniques. arXiv:2008.13582 Jokar M, Patnaik S, Semperlotti F (2020) Variable-order approach to nonlocal elasticity: Theoretical formulation and order identification via deep learning techniques. arXiv:​2008.​13582
Metadaten
Titel
Fractional order models for the homogenization and wave propagation analysis in periodic elastic beams
verfasst von
Sansit Patnaik
John P. Hollkamp
Sai Sidhardh
Fabio Semperlotti
Publikationsdatum
15.05.2021
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2022
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-021-01371-x

Weitere Artikel der Ausgabe 4/2022

Meccanica 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.