Skip to main content
Erschienen in: Archive of Applied Mechanics 4/2024

11.03.2024 | Original

Fractional order of refined Lord–Shulman model for a 1D thermoelastic response of skin tissue due to ramp-type heating

verfasst von: A. M. Zenkour, T. Saeed, A. A. Al-Raezah

Erschienen in: Archive of Applied Mechanics | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This manuscript introduces a novel mathematical formulation employing fractional-order principles to analyze the response of skin tissue exposed to ramp-type heating within the framework of the refined Lord–Shulman generalized thermoelasticity model. The classical, simple Lord–Shulman, and refined Lord–Shulman models are each examined. The governing equations for these three models are derived, and a general solution for the initial and boundary condition problem is obtained using the Laplace transform approach and its inverse. Numerical results are illustrated through figures, providing a comparative analysis across various theories and fractional-order values to elucidate the impact on temperature, displacement, and dilatation distributions. The numerical and graphical exploration of the influence of ramp-type heat on temperature, displacement, and dilatation distributions is conducted, considering different theoretical frameworks. The reduction in the conductivity caused by the fractional parameter and its ensuing effects on temperature, displacement, and stress are determined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fox, N.: Generalised thermoelasticity. Int. J. Eng. Sci. 7(4), 437–445 (1969) Fox, N.: Generalised thermoelasticity. Int. J. Eng. Sci. 7(4), 437–445 (1969)
2.
Zurück zum Zitat Zenkour, A.M., Saeed, T., Aati, A.M.: Refined dual-phase-lag theory for the 1D behavior of skin tissue under ramp-type heating. Materials 16(6), 2421 (2023) Zenkour, A.M., Saeed, T., Aati, A.M.: Refined dual-phase-lag theory for the 1D behavior of skin tissue under ramp-type heating. Materials 16(6), 2421 (2023)
3.
Zurück zum Zitat Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)MathSciNet Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)MathSciNet
4.
Zurück zum Zitat Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967) Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)
5.
Zurück zum Zitat Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972) Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)
6.
Zurück zum Zitat Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998) Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)
7.
Zurück zum Zitat Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22(4–5), 451–476 (1999)MathSciNet Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22(4–5), 451–476 (1999)MathSciNet
8.
Zurück zum Zitat Ignaczak, J., Martin, O.-S.: Thermoelasticity with Finite Wave Speeds. OUP Oxford, Oxford (2009) Ignaczak, J., Martin, O.-S.: Thermoelasticity with Finite Wave Speeds. OUP Oxford, Oxford (2009)
9.
Zurück zum Zitat Sherief, H.H.: Fundamental solution of the generalized thermoelastic problem for short times. J. Therm. Stresses 9(2), 151–164 (1986) Sherief, H.H.: Fundamental solution of the generalized thermoelastic problem for short times. J. Therm. Stresses 9(2), 151–164 (1986)
10.
Zurück zum Zitat Ezzat, M.A., El-Karamany, A.S.: The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int. J. Eng. Sci. 40(11), 1275–1284 (2002)MathSciNet Ezzat, M.A., El-Karamany, A.S.: The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int. J. Eng. Sci. 40(11), 1275–1284 (2002)MathSciNet
11.
Zurück zum Zitat Sharma, S., Sharma, K., Bhargava, R.R.: Effect of viscosity on wave propagation in anisotropic thermoelastic with Green–Naghdi theory type-II and type-III. Mater. Phys. Mech. 16(2), 144–158 (2013) Sharma, S., Sharma, K., Bhargava, R.R.: Effect of viscosity on wave propagation in anisotropic thermoelastic with Green–Naghdi theory type-II and type-III. Mater. Phys. Mech. 16(2), 144–158 (2013)
12.
Zurück zum Zitat Othman, M.I., Abd-Elaziz, E.M.: Influence of gravity and microtemperatures on the thermoelastic porous medium under three theories. Int. J. Numer. Meth. Heat Fluid Flow 29(9), 3242–3262 (2019) Othman, M.I., Abd-Elaziz, E.M.: Influence of gravity and microtemperatures on the thermoelastic porous medium under three theories. Int. J. Numer. Meth. Heat Fluid Flow 29(9), 3242–3262 (2019)
13.
Zurück zum Zitat Sharma, K., Kumar, P.: Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids. J. Therm. Stresses 36(2), 94–111 (2013) Sharma, K., Kumar, P.: Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids. J. Therm. Stresses 36(2), 94–111 (2013)
14.
Zurück zum Zitat Lata, P., Kumar, R., Sharma, N.: Plane waves in an anisotropic thermoelastic. Steel Compos. Struct. 22(3), 567–587 (2016) Lata, P., Kumar, R., Sharma, N.: Plane waves in an anisotropic thermoelastic. Steel Compos. Struct. 22(3), 567–587 (2016)
15.
Zurück zum Zitat Hobiny, A.D., Abbas, I.A.: Analytical solutions of the temperature increment in skin tissues caused by moving heating sources. Steel Compos. Struct. 40(4), 511–516 (2021) Hobiny, A.D., Abbas, I.A.: Analytical solutions of the temperature increment in skin tissues caused by moving heating sources. Steel Compos. Struct. 40(4), 511–516 (2021)
16.
Zurück zum Zitat Zenkour, A.M., Abbas, I.A.: A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties. Int. J. Mech. Sci. 84, 54–60 (2014) Zenkour, A.M., Abbas, I.A.: A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties. Int. J. Mech. Sci. 84, 54–60 (2014)
17.
Zurück zum Zitat Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.F.: Characteristics of Dynamic Waves in Incompressible Fluid Regarding Nonlinear Boiti–Leon–Manna–Pempinelli Model. Research Square, Durham (2023) Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.F.: Characteristics of Dynamic Waves in Incompressible Fluid Regarding Nonlinear Boiti–Leon–Manna–Pempinelli Model. Research Square, Durham (2023)
18.
Zurück zum Zitat Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. R. Soc. 432, 171–194 (1991)MathSciNet Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. R. Soc. 432, 171–194 (1991)MathSciNet
19.
Zurück zum Zitat Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)MathSciNet Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)MathSciNet
20.
Zurück zum Zitat Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)MathSciNet Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)MathSciNet
21.
Zurück zum Zitat Chandrasekharaiah, D.S.A.: Uniqueness theorem in the theory of thermoelasticity without energy dissipation. J. Therm. Stresses 19(3), 267–272 (1996)MathSciNet Chandrasekharaiah, D.S.A.: Uniqueness theorem in the theory of thermoelasticity without energy dissipation. J. Therm. Stresses 19(3), 267–272 (1996)MathSciNet
22.
Zurück zum Zitat Kumar, R., Vashishth, A.K., Ghangas, S.: Phase-lag effects in skin tissue during transient heating. Int. J. Appl. Mech. Eng. 24(3), 603–623 (2019) Kumar, R., Vashishth, A.K., Ghangas, S.: Phase-lag effects in skin tissue during transient heating. Int. J. Appl. Mech. Eng. 24(3), 603–623 (2019)
23.
Zurück zum Zitat Sharma, S.K., Kumar, D.: A study on non-linear DPL model for describing heat transfer in skin tissue during hyperthermia treatment. Entropy 22(4), 481 (2020)MathSciNet Sharma, S.K., Kumar, D.: A study on non-linear DPL model for describing heat transfer in skin tissue during hyperthermia treatment. Entropy 22(4), 481 (2020)MathSciNet
24.
Zurück zum Zitat Chiriţă, S., Ciarletta, M.: Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech. Res. Commun. 37(3), 271–275 (2010) Chiriţă, S., Ciarletta, M.: Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech. Res. Commun. 37(3), 271–275 (2010)
25.
Zurück zum Zitat Ghazanfarian, J., Shomali, Z., Abbassi, A.: Macro-to nanoscale heat and mass transfer: the lagging behavior. Int. J. Thermophys. 36(7), 1416–1467 (2015) Ghazanfarian, J., Shomali, Z., Abbassi, A.: Macro-to nanoscale heat and mass transfer: the lagging behavior. Int. J. Thermophys. 36(7), 1416–1467 (2015)
26.
Zurück zum Zitat Othman, M.I.A., Abbas, I.A.: Generalized thermoelasticity of thermal-shock problem in a non-homogeneous isotropic hollow cylinder with energy dissipation. Int. J. Thermophys. 33(5), 913–923 (2012) Othman, M.I.A., Abbas, I.A.: Generalized thermoelasticity of thermal-shock problem in a non-homogeneous isotropic hollow cylinder with energy dissipation. Int. J. Thermophys. 33(5), 913–923 (2012)
27.
Zurück zum Zitat Sherief, H.H., Raslan, W.E.: A 2D problem of thermoelasticity without energy dissipation for a sphere subjected to axisymmetric temperature distribution. J. Therm. Stresses 40(11), 1461–1470 (2017) Sherief, H.H., Raslan, W.E.: A 2D problem of thermoelasticity without energy dissipation for a sphere subjected to axisymmetric temperature distribution. J. Therm. Stresses 40(11), 1461–1470 (2017)
28.
Zurück zum Zitat Zenkour, A.M., Saeed, T., Alnefaie, K.M.: Refined Green–Lindsay model for the response of skin tissue under a ramp-type heating. Mathematics 11(6), 1437 (2023) Zenkour, A.M., Saeed, T., Alnefaie, K.M.: Refined Green–Lindsay model for the response of skin tissue under a ramp-type heating. Mathematics 11(6), 1437 (2023)
29.
Zurück zum Zitat Singh, S., Melnik, R.: Thermal ablation of biological tissues in disease treatment: a review of computational models and future directions. Electromagn. Biol. Med. 39(2), 49–88 (2020) Singh, S., Melnik, R.: Thermal ablation of biological tissues in disease treatment: a review of computational models and future directions. Electromagn. Biol. Med. 39(2), 49–88 (2020)
30.
Zurück zum Zitat Andreozzi, A., Brunese, L., Iasiello, M., Tucci, C., Vanoli, G.P.: Modeling heat transfer in tumors: a review of thermal therapies. Ann. Biomed. Eng. 47(3), 676–693 (2019) Andreozzi, A., Brunese, L., Iasiello, M., Tucci, C., Vanoli, G.P.: Modeling heat transfer in tumors: a review of thermal therapies. Ann. Biomed. Eng. 47(3), 676–693 (2019)
31.
Zurück zum Zitat Fan, Z., Zhai, X., Zhou, L., Xu, F., Lu, T.: Thermal shock resistance of skin tissue. J. Med. Syst. 35, 863–867 (2011) Fan, Z., Zhai, X., Zhou, L., Xu, F., Lu, T.: Thermal shock resistance of skin tissue. J. Med. Syst. 35, 863–867 (2011)
32.
Zurück zum Zitat Khiavi, N.M., Maerefat, M., Zolfaghari, S.A.: A new local thermal bioheat model for predicting the temperature of skin thermoreceptors of individual body tissues. J. Therm. Biol. 74, 290–302 (2018) Khiavi, N.M., Maerefat, M., Zolfaghari, S.A.: A new local thermal bioheat model for predicting the temperature of skin thermoreceptors of individual body tissues. J. Therm. Biol. 74, 290–302 (2018)
33.
Zurück zum Zitat Li, X., Qin, Q.H., Tian, X.: Thermomechanical response of porous biological tissue based on local thermal non-equilibrium. J. Therm. Stresses 42(12), 1481–1498 (2019) Li, X., Qin, Q.H., Tian, X.: Thermomechanical response of porous biological tissue based on local thermal non-equilibrium. J. Therm. Stresses 42(12), 1481–1498 (2019)
34.
Zurück zum Zitat Sur, A., Mondal, S., Kanoria, M.: Influence of moving heat source on skin tissue in the context of two-temperature memory-dependent heat transport law. J. Therm. Stresses 43(1), 55–71 (2020) Sur, A., Mondal, S., Kanoria, M.: Influence of moving heat source on skin tissue in the context of two-temperature memory-dependent heat transport law. J. Therm. Stresses 43(1), 55–71 (2020)
35.
Zurück zum Zitat Li, C.Y., Lin, S.M., Wan, Y.Y.: Prediction of temperature field and thermal damage of multilayer skin tissues subjected to time-varying laser heating and fluid cooling by a semianalytical method. Math. Problems Eng. (2020). https://doi.org/10.1155/2020/5074280 Li, C.Y., Lin, S.M., Wan, Y.Y.: Prediction of temperature field and thermal damage of multilayer skin tissues subjected to time-varying laser heating and fluid cooling by a semianalytical method. Math. Problems Eng. (2020). https://​doi.​org/​10.​1155/​2020/​5074280
36.
Zurück zum Zitat Etehadtavakol, M., Ng, E.Y.K.: Survey of numerical bioheat transfer modelling for accurate skin surface measurements. Thermal Sci. Eng. Progress 20, 100681 (2020) Etehadtavakol, M., Ng, E.Y.K.: Survey of numerical bioheat transfer modelling for accurate skin surface measurements. Thermal Sci. Eng. Progress 20, 100681 (2020)
37.
Zurück zum Zitat Zhang, L., Shang, X.: An integral transform solution for bioheat transfer in skin tissue subjected to surface laser irradiation. Int. J. Heat Mass Transf. 180, 121706 (2021) Zhang, L., Shang, X.: An integral transform solution for bioheat transfer in skin tissue subjected to surface laser irradiation. Int. J. Heat Mass Transf. 180, 121706 (2021)
38.
Zurück zum Zitat Abdalla, A., Abbas, I., Sapoor, H.: The numerical estimation of temperature in living tissue with energy dissipation using nonlinear bioheat model. Indian J. Phys. 96, 3477–3483 (2022) Abdalla, A., Abbas, I., Sapoor, H.: The numerical estimation of temperature in living tissue with energy dissipation using nonlinear bioheat model. Indian J. Phys. 96, 3477–3483 (2022)
39.
Zurück zum Zitat Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986) Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)
40.
Zurück zum Zitat Ezzat, M.A., El-Karamany, A.S.: Fractional-order theory of a perfect conducting thermoelastic medium. Can. J. Phys. 89(3), 311–318 (2011) Ezzat, M.A., El-Karamany, A.S.: Fractional-order theory of a perfect conducting thermoelastic medium. Can. J. Phys. 89(3), 311–318 (2011)
41.
Zurück zum Zitat Hendy, M.H., Amin, M.M., Ezzat, M.A.: Two-dimensional problem for thermoviscoelastic materials with fractional-order heat transfer. J. Therm. Stresses 42(10), 1298–1315 (2019) Hendy, M.H., Amin, M.M., Ezzat, M.A.: Two-dimensional problem for thermoviscoelastic materials with fractional-order heat transfer. J. Therm. Stresses 42(10), 1298–1315 (2019)
42.
Zurück zum Zitat Abbas, I.A.: Eigenvalue approach to fractional-order generalized magneto-thermoelastic medium subjected to moving heat source. J. Magn. Magn. Mater. 377, 452–459 (2015) Abbas, I.A.: Eigenvalue approach to fractional-order generalized magneto-thermoelastic medium subjected to moving heat source. J. Magn. Magn. Mater. 377, 452–459 (2015)
43.
Zurück zum Zitat Sharma, N., Kumar, R., Lata, P.: Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation. Mater. Phys. Mech. 22(2), 107–117 (2015) Sharma, N., Kumar, R., Lata, P.: Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation. Mater. Phys. Mech. 22(2), 107–117 (2015)
44.
Zurück zum Zitat Abbas, I.A.: Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory. J. Mech. Sci. Technol. 28(10), 4193–4198 (2014)MathSciNet Abbas, I.A.: Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory. J. Mech. Sci. Technol. 28(10), 4193–4198 (2014)MathSciNet
45.
Zurück zum Zitat Ezzat, M.A., Abd-Elaal, M.Z.: Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J. Franklin Inst. 334(4), 685–706 (1997)MathSciNet Ezzat, M.A., Abd-Elaal, M.Z.: Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J. Franklin Inst. 334(4), 685–706 (1997)MathSciNet
46.
Zurück zum Zitat Sherief, H.H., El-Sayed, A.M.A., Abd El-Latief, A.M.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010) Sherief, H.H., El-Sayed, A.M.A., Abd El-Latief, A.M.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010)
47.
Zurück zum Zitat Sherief, H.H., Raslan, W.E.: 2D Problem for a long cylinder in the fractional theory of thermoelasticity. J. Solids Struct. 13, 1596–1613 (2016) Sherief, H.H., Raslan, W.E.: 2D Problem for a long cylinder in the fractional theory of thermoelasticity. J. Solids Struct. 13, 1596–1613 (2016)
48.
Zurück zum Zitat Hendy, M.H., El-Attar, S.I., Ezzat, M.A.: Two-temperature fractional Green–Naghdi of type III in magneto-thermo-viscoelasticity theory subjected to a moving heat source. Indian J. Phys. 95, 657–671 (2021) Hendy, M.H., El-Attar, S.I., Ezzat, M.A.: Two-temperature fractional Green–Naghdi of type III in magneto-thermo-viscoelasticity theory subjected to a moving heat source. Indian J. Phys. 95, 657–671 (2021)
49.
Zurück zum Zitat Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Zeitschrift Für Angewandte Mathematik Und Physik (ZAMP) 19, 614–627 (1968) Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Zeitschrift Für Angewandte Mathematik Und Physik (ZAMP) 19, 614–627 (1968)
50.
Zurück zum Zitat Ezzat, M.A., Awad, E.S.: Constitutive relations, uniqueness of solution, and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stresses 33(3), 226–250 (2010) Ezzat, M.A., Awad, E.S.: Constitutive relations, uniqueness of solution, and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stresses 33(3), 226–250 (2010)
51.
Zurück zum Zitat Kumar, A., Abhishek, Rajeev, Gómez-Aguilar, J.F.: A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition. J. Thermal Anal. Calorim. 147(24), 14649–14657 (2022) Kumar, A., Abhishek, Rajeev, Gómez-Aguilar, J.F.: A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition. J. Thermal Anal. Calorim. 147(24), 14649–14657 (2022)
52.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, p. 198. Academic Press, Cambridge (1998) Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, p. 198. Academic Press, Cambridge (1998)
53.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equations: an Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010) Diethelm, K.: The Analysis of Fractional Differential Equations: an Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)
54.
Zurück zum Zitat Abbas, I.A., Zenkour, A.M.: Semi-analytical and numerical solution of fractional-order generalized thermoelastic in a semi-infinite medium. J. Comput. Theor. Nanosci. 11(7), 1592–1596 (2014) Abbas, I.A., Zenkour, A.M.: Semi-analytical and numerical solution of fractional-order generalized thermoelastic in a semi-infinite medium. J. Comput. Theor. Nanosci. 11(7), 1592–1596 (2014)
55.
Zurück zum Zitat Kilbas, A.A., Rivero, M., Rodriguez-Germa, L., Trujillo, J.J.: Caputo linear fractional differential equations. IFAC Proc. 39(11), 52–57 (2006) Kilbas, A.A., Rivero, M., Rodriguez-Germa, L., Trujillo, J.J.: Caputo linear fractional differential equations. IFAC Proc. 39(11), 52–57 (2006)
56.
Zurück zum Zitat Morales-Delgado, V.F., Taneco-Hernández, M.A., Vargas-De-León, C., Gómez-Aguilar, J.F.: Exact solutions to fractional pharmacokinetic models using multivariate Mittag–Leffler functions. Chaos Solitons Fractals 168, 113164 (2023)MathSciNet Morales-Delgado, V.F., Taneco-Hernández, M.A., Vargas-De-León, C., Gómez-Aguilar, J.F.: Exact solutions to fractional pharmacokinetic models using multivariate Mittag–Leffler functions. Chaos Solitons Fractals 168, 113164 (2023)MathSciNet
57.
Zurück zum Zitat Taneco-Hernández, M.A., Marco, Gómez-Aguilar, J.F., Cuahutenango-Barro, B.: Wave process in viscoelastic media using fractional derivatives with nonsingular kernels. Math. Methods Appl. Sci. 46(4), 4413–4436 (2023)MathSciNet Taneco-Hernández, M.A., Marco, Gómez-Aguilar, J.F., Cuahutenango-Barro, B.: Wave process in viscoelastic media using fractional derivatives with nonsingular kernels. Math. Methods Appl. Sci. 46(4), 4413–4436 (2023)MathSciNet
58.
Zurück zum Zitat Ibrahim, N.R., Gómez-Aguilar, J.F., Razo-Hernández, J.R.: Fractionalizing, coupling and methods for the coupled system of two-dimensional heat diffusion models. AIMS Math. 8(5), 11180–11201 (2023)MathSciNet Ibrahim, N.R., Gómez-Aguilar, J.F., Razo-Hernández, J.R.: Fractionalizing, coupling and methods for the coupled system of two-dimensional heat diffusion models. AIMS Math. 8(5), 11180–11201 (2023)MathSciNet
59.
Zurück zum Zitat Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A., Fayik, M.A.: Fractional calculus in one-dimensional isotropic thermo-viscoelasticity. C. R. Mec. 341(7), 553–566 (2013) Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A., Fayik, M.A.: Fractional calculus in one-dimensional isotropic thermo-viscoelasticity. C. R. Mec. 341(7), 553–566 (2013)
60.
Zurück zum Zitat Zhang, Q., Sunan, Y., Yang, J.: Bio-heat response of skin tissue based on three-phase-lag model. Sci. Rep. 10, 16421 (2020) Zhang, Q., Sunan, Y., Yang, J.: Bio-heat response of skin tissue based on three-phase-lag model. Sci. Rep. 10, 16421 (2020)
61.
Zurück zum Zitat Zenkour, A.M., Saeed, T., Alnefaie, Kh.M.: Analysis of the bio-thermoelasticity response of biological tissues subjected to harmonic heating using a refined Green–Lindsay model. J. Comput. Appl. Mechan. 54(4), 588–606 (2023) Zenkour, A.M., Saeed, T., Alnefaie, Kh.M.: Analysis of the bio-thermoelasticity response of biological tissues subjected to harmonic heating using a refined Green–Lindsay model. J. Comput. Appl. Mechan. 54(4), 588–606 (2023)
63.
Zurück zum Zitat Sobhy, M., Zenkour, A.M.: Refined Lord–Shulman theory for 1D response of skin tissue under ramp-type heat. Materials 15(18), 6292 (2022) Sobhy, M., Zenkour, A.M.: Refined Lord–Shulman theory for 1D response of skin tissue under ramp-type heat. Materials 15(18), 6292 (2022)
64.
Zurück zum Zitat Honig, G., Hirdes, U.: A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 10, 113–132 (1984)MathSciNet Honig, G., Hirdes, U.: A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 10, 113–132 (1984)MathSciNet
Metadaten
Titel
Fractional order of refined Lord–Shulman model for a 1D thermoelastic response of skin tissue due to ramp-type heating
verfasst von
A. M. Zenkour
T. Saeed
A. A. Al-Raezah
Publikationsdatum
11.03.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 4/2024
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-024-02561-1

Weitere Artikel der Ausgabe 4/2024

Archive of Applied Mechanics 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.