Skip to main content
Erschienen in: Progress in Additive Manufacturing 4/2021

18.06.2021 | Review Article

Fracture testing of polymer materials processed via fused filament fabrication: a survey of materials, methods, and design applications

verfasst von: Albert E. Patterson, Charul Chadha, Iwona M. Jasiuk, James T. Allison

Erschienen in: Progress in Additive Manufacturing | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) provides a wide range of design freedoms, enabling engineers to create complex geometries. However, due to the inherent nature of the manufacturing process, defects are introduced in the material during AM. These defects may develop into cracks and lead to failure of the system at lower loads than predicted from datasheets for traditionally manufactured materials. Thus, it is essential for design engineers to understand fracture properties of AM materials. The fracture mechanics can provide valuable inputs for design-related decision making (for both material design and macro-scale product design) to minimize possibility of failure. This article collected and reviewed the relevant literature on fracture testing of AM-fabricated polymer materials. Information on the testing methods used, the materials and processes, and the standards followed were collected and discussed in terms of their impact on design perspectives. In addition to collecting a dataset and establishing the state-of-the-art, this article identified opportunities and areas that need further studies, discussed design-centric interpretations of AM polymer fracture data, and provided recommendations on how to improve future studies and ensure the data is useful for consideration during engineering design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Banichuk NV, Ivanova SY, Ragnedda F (2008) Design of fracture resistant structures. Int J Fract 150:213–220MATHCrossRef Banichuk NV, Ivanova SY, Ragnedda F (2008) Design of fracture resistant structures. Int J Fract 150:213–220MATHCrossRef
2.
Zurück zum Zitat Brooks C, Choudhury A (2002) Failure Analysis of Engineering Materials. McGraw-Hill, Blacklick Brooks C, Choudhury A (2002) Failure Analysis of Engineering Materials. McGraw-Hill, Blacklick
3.
Zurück zum Zitat Anderson T (2012) Fracture Mechanics: Fundamentals and Applications, 4th edn. CRC Press, Boca RatonMATH Anderson T (2012) Fracture Mechanics: Fundamentals and Applications, 4th edn. CRC Press, Boca RatonMATH
4.
Zurück zum Zitat Ishikawa M, Ogawa H, Narisawa I (1981) Brittle fracture in glassy polymers. J Macromol Sci Part B 19:421–443CrossRef Ishikawa M, Ogawa H, Narisawa I (1981) Brittle fracture in glassy polymers. J Macromol Sci Part B 19:421–443CrossRef
5.
Zurück zum Zitat Pineau A, Benzerga A, Pardoen T (2016) Failure of metals i: Brittle and ductile fracture. Acta Mater 107:424–483CrossRef Pineau A, Benzerga A, Pardoen T (2016) Failure of metals i: Brittle and ductile fracture. Acta Mater 107:424–483CrossRef
6.
Zurück zum Zitat Dasgupta A, Hu J (1992) Failure mechanism models for plastic deformation. IEEE Trans Reliab 41:168–174CrossRef Dasgupta A, Hu J (1992) Failure mechanism models for plastic deformation. IEEE Trans Reliab 41:168–174CrossRef
7.
Zurück zum Zitat Lapovok R, Pougis A, Lemiale V, Orlov D, Toth LS, Estrin Y (2010) Severe plastic deformation processes for thin samples. J Mater Sci 45:4554–4560CrossRef Lapovok R, Pougis A, Lemiale V, Orlov D, Toth LS, Estrin Y (2010) Severe plastic deformation processes for thin samples. J Mater Sci 45:4554–4560CrossRef
8.
Zurück zum Zitat Mischke C (1970) A method of relating factor of safety and reliability. J Eng Ind 92:537–541CrossRef Mischke C (1970) A method of relating factor of safety and reliability. J Eng Ind 92:537–541CrossRef
9.
Zurück zum Zitat Sagot J-C, Gouin V, Gomes S (2003) Ergonomics in product design: safety factor. Saf Sci 41:137–154CrossRef Sagot J-C, Gouin V, Gomes S (2003) Ergonomics in product design: safety factor. Saf Sci 41:137–154CrossRef
10.
Zurück zum Zitat Crilly N, Moultrie J, Clarkson P (2004) Seeing things: consumer response to the visual domain in product design. Des Stud 25:547–577CrossRef Crilly N, Moultrie J, Clarkson P (2004) Seeing things: consumer response to the visual domain in product design. Des Stud 25:547–577CrossRef
11.
Zurück zum Zitat Teng X, Mae H, Bai Y, Wierzbicki T (2009) Pore size and fracture ductility of aluminum low pressure die casting. Eng Fract Mech 76:983–996CrossRef Teng X, Mae H, Bai Y, Wierzbicki T (2009) Pore size and fracture ductility of aluminum low pressure die casting. Eng Fract Mech 76:983–996CrossRef
12.
Zurück zum Zitat Zweben C Overview of advanced composites for thermal management. In: Proceedings. 4th International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.98EX153), IEEE, ???? Zweben C Overview of advanced composites for thermal management. In: Proceedings. 4th International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.98EX153), IEEE, ????
13.
Zurück zum Zitat Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohyd Polym 98:1585–1598CrossRef Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohyd Polym 98:1585–1598CrossRef
14.
Zurück zum Zitat Osanov M, Guest JK (2016) Topology optimization for architected materials design. Annu Rev Mater Res 46:211–233CrossRef Osanov M, Guest JK (2016) Topology optimization for architected materials design. Annu Rev Mater Res 46:211–233CrossRef
15.
Zurück zum Zitat Shan S, Kang SH, Raney JR, Wang P, Fang L, Candido F, Lewis JA, Bertoldi K (2015) Multistable architected materials for trapping elastic strain energy. Adv Mater 27:4296–4301CrossRef Shan S, Kang SH, Raney JR, Wang P, Fang L, Candido F, Lewis JA, Bertoldi K (2015) Multistable architected materials for trapping elastic strain energy. Adv Mater 27:4296–4301CrossRef
16.
Zurück zum Zitat Natarajan S, Manickam G (2012) Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem Anal Des 57:32–42CrossRef Natarajan S, Manickam G (2012) Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem Anal Des 57:32–42CrossRef
17.
Zurück zum Zitat Moritz D, Wang C, Nelson GL, Lin H, Smith AM, Howe B, Heer J (2019) Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco. IEEE Trans Vis Comput Graph 25:438–448CrossRef Moritz D, Wang C, Nelson GL, Lin H, Smith AM, Howe B, Heer J (2019) Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco. IEEE Trans Vis Comput Graph 25:438–448CrossRef
18.
Zurück zum Zitat Peng G, Wang H, Zhang H, Zhao Y, Johnson AL (2017) A collaborative system for capturing and reusing in-context design knowledge with an integrated representation model. Adv Eng Inform 33:314–329CrossRef Peng G, Wang H, Zhang H, Zhao Y, Johnson AL (2017) A collaborative system for capturing and reusing in-context design knowledge with an integrated representation model. Adv Eng Inform 33:314–329CrossRef
19.
Zurück zum Zitat Drechsler A, Hevner AR (2018) Utilizing, producing, and contributing design knowledge in DSR projects. In: Designing for a Digital and Globalized World, Springer International Publishing, pp 82–97 Drechsler A, Hevner AR (2018) Utilizing, producing, and contributing design knowledge in DSR projects. In: Designing for a Digital and Globalized World, Springer International Publishing, pp 82–97
20.
Zurück zum Zitat Guessasma S, Belhabib S, Nouri H, Hassana OB (2016) Anisotropic damage inferred to 3d printed polymers using fused deposition modelling and subject to severe compression. Eur Polymer J 85:324–340CrossRef Guessasma S, Belhabib S, Nouri H, Hassana OB (2016) Anisotropic damage inferred to 3d printed polymers using fused deposition modelling and subject to severe compression. Eur Polymer J 85:324–340CrossRef
21.
Zurück zum Zitat Allum J, Gleadall A, Silberschmidt VV (2020) Fracture of 3d-printed polymers: crucial role of filament-scale geometric features. Eng Fract Mech 224:106818CrossRef Allum J, Gleadall A, Silberschmidt VV (2020) Fracture of 3d-printed polymers: crucial role of filament-scale geometric features. Eng Fract Mech 224:106818CrossRef
22.
Zurück zum Zitat Peng F, Zhao Z, Xia X, Cakmak M, Vogt BD (2018) Enhanced impact resistance of three-dimensional-printed parts with structured filaments. ACS Appl Mater Interfaces 10:16087–16094CrossRef Peng F, Zhao Z, Xia X, Cakmak M, Vogt BD (2018) Enhanced impact resistance of three-dimensional-printed parts with structured filaments. ACS Appl Mater Interfaces 10:16087–16094CrossRef
23.
Zurück zum Zitat Papon EA, Haque A (2019) Fracture toughness of additively manufactured carbon fiber reinforced composites. Addit Manuf 26:41–52 Papon EA, Haque A (2019) Fracture toughness of additively manufactured carbon fiber reinforced composites. Addit Manuf 26:41–52
24.
Zurück zum Zitat Gibson I, Rosen D, Stucker B (2016) Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer, New York Gibson I, Rosen D, Stucker B (2016) Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer, New York
25.
Zurück zum Zitat Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243CrossRef Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243CrossRef
26.
Zurück zum Zitat Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65:737–760CrossRef Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65:737–760CrossRef
27.
Zurück zum Zitat Aliheidari N, Christ J, Tripuraneni R, Nadimpalli S, Ameli A (2018) Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Mater Des 156:351–361CrossRef Aliheidari N, Christ J, Tripuraneni R, Nadimpalli S, Ameli A (2018) Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Mater Des 156:351–361CrossRef
28.
Zurück zum Zitat Rahman KM, Letcher T, Reese R (2015) Mechanical properties of additively manufactured PEEK components using fused filament fabrication. In: Volume 2A: Advanced Manufacturing, American Society of Mechanical Engineers Rahman KM, Letcher T, Reese R (2015) Mechanical properties of additively manufactured PEEK components using fused filament fabrication. In: Volume 2A: Advanced Manufacturing, American Society of Mechanical Engineers
29.
Zurück zum Zitat Mourad A-HI, Idrisi AH, Christy JV, Thekkuden DT, Jassmi HA, Ghazal AS, Syam MM, Qadi ODAAA (2019) Mechanical performance assessment of internally-defected materials manufactured using additive manufacturing technology. J Manuf Mater Process 3:74 Mourad A-HI, Idrisi AH, Christy JV, Thekkuden DT, Jassmi HA, Ghazal AS, Syam MM, Qadi ODAAA (2019) Mechanical performance assessment of internally-defected materials manufactured using additive manufacturing technology. J Manuf Mater Process 3:74
30.
Zurück zum Zitat Lanzillotti P, Gardan J, Makke A, Recho N (2019) Enhancement of fracture toughness under mixed mode loading of ABS specimens produced by 3d printing. Rapid Prototyp J 25:679–689CrossRef Lanzillotti P, Gardan J, Makke A, Recho N (2019) Enhancement of fracture toughness under mixed mode loading of ABS specimens produced by 3d printing. Rapid Prototyp J 25:679–689CrossRef
31.
Zurück zum Zitat Spoerk M, Savandaiah C, Arbeiter F, Traxler G, Cardon L, Holzer C, Sapkota J (2018) Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos A Appl Sci Manuf 113:95–104CrossRef Spoerk M, Savandaiah C, Arbeiter F, Traxler G, Cardon L, Holzer C, Sapkota J (2018) Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos A Appl Sci Manuf 113:95–104CrossRef
32.
Zurück zum Zitat Li H, Zhang S, Yi Z, Li J, Sun A, Guo J, Xu G (2017) Bonding quality and fracture analysis of polyamide 12 parts fabricated by fused deposition modeling. Rapid Prototyp J 23:973–982CrossRef Li H, Zhang S, Yi Z, Li J, Sun A, Guo J, Xu G (2017) Bonding quality and fracture analysis of polyamide 12 parts fabricated by fused deposition modeling. Rapid Prototyp J 23:973–982CrossRef
33.
Zurück zum Zitat Khatri A, Adnan A (2016) Effect of raster orientation on fracture toughness properties of 3d printed ABS materials and structures. In: Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis, American Society of Mechanical Engineers Khatri A, Adnan A (2016) Effect of raster orientation on fracture toughness properties of 3d printed ABS materials and structures. In: Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis, American Society of Mechanical Engineers
34.
Zurück zum Zitat Gardan J, Makke A, Recho N (2016) A method to improve the fracture toughness using 3d printing by extrusion deposition. Procedia Struct Integrity 2:144–151CrossRef Gardan J, Makke A, Recho N (2016) A method to improve the fracture toughness using 3d printing by extrusion deposition. Procedia Struct Integrity 2:144–151CrossRef
35.
Zurück zum Zitat Gardan J, Makke A, Recho N (2017) Improving the fracture toughness of 3d printed thermoplastic polymers by fused deposition modeling. Int J Fract 210:1–15CrossRef Gardan J, Makke A, Recho N (2017) Improving the fracture toughness of 3d printed thermoplastic polymers by fused deposition modeling. Int J Fract 210:1–15CrossRef
36.
Zurück zum Zitat McLouth TD, Severino JV, Adams PM, Patel DN, Zaldivar RJ (2017) The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS. Addit Manuf 18:103–109 McLouth TD, Severino JV, Adams PM, Patel DN, Zaldivar RJ (2017) The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS. Addit Manuf 18:103–109
37.
Zurück zum Zitat Arbeiter F, Spoerk M, Wiener J, Gosch A, Pinter G (2018) Fracture mechanical characterization and lifetime estimation of near-homogeneous components produced by fused filament fabrication. Polym Test 66:105–113CrossRef Arbeiter F, Spoerk M, Wiener J, Gosch A, Pinter G (2018) Fracture mechanical characterization and lifetime estimation of near-homogeneous components produced by fused filament fabrication. Polym Test 66:105–113CrossRef
38.
Zurück zum Zitat Aliheidari N, Tripuraneni R, Ameli A, Nadimpalli S (2017) Fracture resistance measurement of fused deposition modeling 3d printed polymers. Polym Test 60:94–101CrossRef Aliheidari N, Tripuraneni R, Ameli A, Nadimpalli S (2017) Fracture resistance measurement of fused deposition modeling 3d printed polymers. Polym Test 60:94–101CrossRef
39.
Zurück zum Zitat Khan AS, Ali A, Hussain G, Ilyas M (2019) An experimental study on interfacial fracture toughness of 3-d printed ABS/CF-PLA composite under mode i, II, and mixed-mode loading. J Thermoplast Compos Mater. pp 089270571987486 Khan AS, Ali A, Hussain G, Ilyas M (2019) An experimental study on interfacial fracture toughness of 3-d printed ABS/CF-PLA composite under mode i, II, and mixed-mode loading. J Thermoplast Compos Mater. pp 089270571987486
40.
Zurück zum Zitat Young D, Wetmore N, Czabaj M (2018) Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene. Addit Manuf 22:508–515 Young D, Wetmore N, Czabaj M (2018) Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene. Addit Manuf 22:508–515
41.
Zurück zum Zitat Ghandriz R, Hart K, Li J (2020) Extended finite element method (XFEM) modeling of fracture in additively manufactured polymers. Addit Manuf 31:100945 Ghandriz R, Hart K, Li J (2020) Extended finite element method (XFEM) modeling of fracture in additively manufactured polymers. Addit Manuf 31:100945
42.
Zurück zum Zitat Hart KR, Wetzel ED (2017) Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Eng Fract Mech 177:1–13CrossRef Hart KR, Wetzel ED (2017) Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Eng Fract Mech 177:1–13CrossRef
43.
Zurück zum Zitat Hart KR, Dunn RM, Sietins JM, Mock CMH, Mackay ME, Wetzel ED (2018) Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer 144:192–204CrossRef Hart KR, Dunn RM, Sietins JM, Mock CMH, Mackay ME, Wetzel ED (2018) Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer 144:192–204CrossRef
44.
Zurück zum Zitat Lanzillotti P, Gardan J, Makke A, Recho N (2018) Strengthening in fracture toughness of a smart material manufactured by 3d printing. IFAC-PapersOnLine 51:1353–1358CrossRef Lanzillotti P, Gardan J, Makke A, Recho N (2018) Strengthening in fracture toughness of a smart material manufactured by 3d printing. IFAC-PapersOnLine 51:1353–1358CrossRef
45.
Zurück zum Zitat Rabbi M, Chalivendra V, Li D (2019) A novel approach to increase dynamic fracture toughness of additively manufactured polymer. Exp Mech 59:899–911CrossRef Rabbi M, Chalivendra V, Li D (2019) A novel approach to increase dynamic fracture toughness of additively manufactured polymer. Exp Mech 59:899–911CrossRef
46.
Zurück zum Zitat Patterson AE (2018) Crack propagation in 3-D printed PLA: Finite element modeling, test bed design, and preliminary experimental results, Technical Report, IDEALS - University of Illinois at Urbana-Champaign. Accessed Jan 3, 2020. Available at http://hdl.handle.net/2142/100334 Patterson AE (2018) Crack propagation in 3-D printed PLA: Finite element modeling, test bed design, and preliminary experimental results, Technical Report, IDEALS - University of Illinois at Urbana-Champaign. Accessed Jan 3, 2020. Available at http://​hdl.​handle.​net/​2142/​100334
47.
Zurück zum Zitat Lenti A (2019) Fracture Toughness Assessment using Digital Image Correlation in Additive Manufacturing, Master’s thesis, Polytechnic of Turin, Turin, Italy. Masters Thesis - Mechanical Engineering Lenti A (2019) Fracture Toughness Assessment using Digital Image Correlation in Additive Manufacturing, Master’s thesis, Polytechnic of Turin, Turin, Italy. Masters Thesis - Mechanical Engineering
48.
Zurück zum Zitat Taylor G, Anandan S, Murphy D, Leu M, Chandrashekhara K (2018) Fracture toughness of additively manufactured ULTEM 1010. Virtual Phys Prototyp 14:277–283CrossRef Taylor G, Anandan S, Murphy D, Leu M, Chandrashekhara K (2018) Fracture toughness of additively manufactured ULTEM 1010. Virtual Phys Prototyp 14:277–283CrossRef
49.
Zurück zum Zitat Dunn RM, Hart KR, Wetzel ED (2019) Improving fracture strength of fused filament fabrication parts via thermal annealing in a printed support shell. Prog Addit Manuf 4:233–243CrossRef Dunn RM, Hart KR, Wetzel ED (2019) Improving fracture strength of fused filament fabrication parts via thermal annealing in a printed support shell. Prog Addit Manuf 4:233–243CrossRef
50.
Zurück zum Zitat Hart KR, Dunn RM, Wetzel ED (2019) Tough, additively manufactured structures fabricated with dual-thermoplastic filaments, Advanced Engineering Materials. pp 1901184 Hart KR, Dunn RM, Wetzel ED (2019) Tough, additively manufactured structures fabricated with dual-thermoplastic filaments, Advanced Engineering Materials. pp 1901184
51.
Zurück zum Zitat Song Y, Li Y, Song W, Yee K, Lee K-Y, Tagarielli V (2017) Measurements of the mechanical response of unidirectional 3d-printed PLA. Mater Des 123:154–164CrossRef Song Y, Li Y, Song W, Yee K, Lee K-Y, Tagarielli V (2017) Measurements of the mechanical response of unidirectional 3d-printed PLA. Mater Des 123:154–164CrossRef
52.
Zurück zum Zitat Djouda JM, Gallittelli D, Zouaoui M, Makke A, Gardan J, Recho N, Crépin J (2019) Local scale fracture characterization of an advanced structured material manufactured by fused deposition modeling in 3d printing. Frattura ed Integrità Strutturale 14:534–540CrossRef Djouda JM, Gallittelli D, Zouaoui M, Makke A, Gardan J, Recho N, Crépin J (2019) Local scale fracture characterization of an advanced structured material manufactured by fused deposition modeling in 3d printing. Frattura ed Integrità Strutturale 14:534–540CrossRef
53.
Zurück zum Zitat Li J, Yang S, Li D, Chalivendra V (2018) Numerical and experimental studies of additively manufactured polymers for enhanced fracture properties. Eng Fract Mech 204:557–569CrossRef Li J, Yang S, Li D, Chalivendra V (2018) Numerical and experimental studies of additively manufactured polymers for enhanced fracture properties. Eng Fract Mech 204:557–569CrossRef
54.
Zurück zum Zitat Akasheh F, Aglan H (2018) Fracture toughness enhancement of carbon fiber-reinforced polymer composites utilizing additive manufacturing fabrication. J Elastom Plastics 51:698–711CrossRef Akasheh F, Aglan H (2018) Fracture toughness enhancement of carbon fiber-reinforced polymer composites utilizing additive manufacturing fabrication. J Elastom Plastics 51:698–711CrossRef
55.
Zurück zum Zitat Ahmed A, Susmel L (2017) Additively manufactured PLA under static loading: strength/cracking behaviour vs. deposition angle. Procedia Structural Integrity vol. 3, pp 498–507 Ahmed A, Susmel L (2017) Additively manufactured PLA under static loading: strength/cracking behaviour vs. deposition angle. Procedia Structural Integrity vol. 3, pp 498–507
56.
Zurück zum Zitat Cuesta I, Martinez-Pañeda E, Díaz A, Alegre J (2019) The essential work of fracture parameters for 3d printed polymer sheets. Mater Des 181:107968CrossRef Cuesta I, Martinez-Pañeda E, Díaz A, Alegre J (2019) The essential work of fracture parameters for 3d printed polymer sheets. Mater Des 181:107968CrossRef
57.
Zurück zum Zitat Davis CS, Hillgartner KE, Han SH, Seppala JE (2017) Mechanical strength of welding zones produced by polymer extrusion additive manufacturing. Addit Manuf 16:162–166 Davis CS, Hillgartner KE, Han SH, Seppala JE (2017) Mechanical strength of welding zones produced by polymer extrusion additive manufacturing. Addit Manuf 16:162–166
58.
Zurück zum Zitat Gorski F, Kuczko W, Wichniarek R (2014) Impact strength of abs parts manufactured using fused deposition modeling technology. Arch Mech Technol Autom 34:3–12 Gorski F, Kuczko W, Wichniarek R (2014) Impact strength of abs parts manufactured using fused deposition modeling technology. Arch Mech Technol Autom 34:3–12
59.
Zurück zum Zitat Hadidi H, Mailand B, Sundermann T, Johnson E, Madireddy G, Negahban M, Delbreilh L, Sealy M (2019) Low velocity impact of ABS after shot peening predefined layers during additive manufacturing. Procedia Manuf 34:594–602CrossRef Hadidi H, Mailand B, Sundermann T, Johnson E, Madireddy G, Negahban M, Delbreilh L, Sealy M (2019) Low velocity impact of ABS after shot peening predefined layers during additive manufacturing. Procedia Manuf 34:594–602CrossRef
60.
Zurück zum Zitat Caminero M, Chacón J, García-Moreno I, Rodríguez G (2018) Impact damage resistance of 3d printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos B Eng 148:93–103CrossRef Caminero M, Chacón J, García-Moreno I, Rodríguez G (2018) Impact damage resistance of 3d printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos B Eng 148:93–103CrossRef
61.
Zurück zum Zitat Yasa E (2019) Anisotropic impact toughness of chopped carbon fiber reinforced nylon fabricated by material-extrusion-based additive manufacturing. Anadolu Univ J Sci Technol Appl Sci Eng 20:195–203 Yasa E (2019) Anisotropic impact toughness of chopped carbon fiber reinforced nylon fabricated by material-extrusion-based additive manufacturing. Anadolu Univ J Sci Technol Appl Sci Eng 20:195–203
62.
Zurück zum Zitat Patterson AE, Pereira TR, Allison JT, Messimer SL (2919) IZOD impact properties of full-density fused deposition modeling polymer materials with respect to raster angle and print orientation. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp 095440621984038 Patterson AE, Pereira TR, Allison JT, Messimer SL (2919) IZOD impact properties of full-density fused deposition modeling polymer materials with respect to raster angle and print orientation. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp 095440621984038
63.
Zurück zum Zitat Roberson DA, Perez ART, Shemelya CM, Rivera A, MacDonald E, Wicker RB (2015) Comparison of stress concentrator fabrication for 3d printed polymeric izod impact test specimens. Addit Manuf 7:1–11 Roberson DA, Perez ART, Shemelya CM, Rivera A, MacDonald E, Wicker RB (2015) Comparison of stress concentrator fabrication for 3d printed polymeric izod impact test specimens. Addit Manuf 7:1–11
64.
Zurück zum Zitat Baqasah H, He F, Zai BA, Asif M, Khan KA, Thakur VK, Khan MA (2019) In-situ dynamic response measurement for damage quantification of 3d printed ABS cantilever beam under thermomechanical load. Polymers 11:2079CrossRef Baqasah H, He F, Zai BA, Asif M, Khan KA, Thakur VK, Khan MA (2019) In-situ dynamic response measurement for damage quantification of 3d printed ABS cantilever beam under thermomechanical load. Polymers 11:2079CrossRef
65.
Zurück zum Zitat ASTM, D256–10 (2018) Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. Standard, ASTM International, West Conshohocken, PA, p 2018 ASTM, D256–10 (2018) Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. Standard, ASTM International, West Conshohocken, PA, p 2018
66.
Zurück zum Zitat ASTM, ASTM D638 - 14 (2014) Standard Test Method for Tensile Properties of Plastics, Standard, ASTM International, West Conshohocken, PA ASTM, ASTM D638 - 14 (2014) Standard Test Method for Tensile Properties of Plastics, Standard, ASTM International, West Conshohocken, PA
67.
Zurück zum Zitat ASTM, D695 - 15 (2015) Standard Test Method for Compressive Properties of Rigid Plastics, Standard, ASTM International, West Conshohocken, PA ASTM, D695 - 15 (2015) Standard Test Method for Compressive Properties of Rigid Plastics, Standard, ASTM International, West Conshohocken, PA
68.
Zurück zum Zitat ASTM, D790 - 17 (2017) Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Standard, ASTM International, West Conshohocken, PA ASTM, D790 - 17 (2017) Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Standard, ASTM International, West Conshohocken, PA
69.
Zurück zum Zitat ASTM, D6110 - 18 (2018) Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics, Standard, ASTM International, West Conshohocken, PA ASTM, D6110 - 18 (2018) Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics, Standard, ASTM International, West Conshohocken, PA
70.
Zurück zum Zitat ISO, 178:2019 (2019) Plastics — Determination of flexural properties, Standard, International Organization for Standardization, Geneva, CH ISO, 178:2019 (2019) Plastics — Determination of flexural properties, Standard, International Organization for Standardization, Geneva, CH
71.
Zurück zum Zitat ISO, 179:2010 (2010) Plastics — Determination of Charpy impact properties, Standard, International Organization for Standardization, Geneva, CH ISO, 179:2010 (2010) Plastics — Determination of Charpy impact properties, Standard, International Organization for Standardization, Geneva, CH
72.
Zurück zum Zitat ASTM, D5045 - 14 (2014) Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials, Standard, ASTM International, West Conshohocken, PA ASTM, D5045 - 14 (2014) Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials, Standard, ASTM International, West Conshohocken, PA
73.
Zurück zum Zitat ASTM, D6068–10 (2018) Standard Test Method for Determining J-R Curves of Plastic Materials. Standard, ASTM International, West Conshohocken, PA, p 2018 ASTM, D6068–10 (2018) Standard Test Method for Determining J-R Curves of Plastic Materials. Standard, ASTM International, West Conshohocken, PA, p 2018
74.
Zurück zum Zitat ASTM, E1820 - 20 (2020) Standard Test Method for Measurement of Fracture Toughness, Standard, ASTM International, West Conshohocken, PA ASTM, E1820 - 20 (2020) Standard Test Method for Measurement of Fracture Toughness, Standard, ASTM International, West Conshohocken, PA
75.
Zurück zum Zitat ASTM, STP1359 (1999) Mixed-Mode Crack Behavior, Standard, ASTM International, West Conshohocken, PA ASTM, STP1359 (1999) Mixed-Mode Crack Behavior, Standard, ASTM International, West Conshohocken, PA
76.
Zurück zum Zitat ISO, 13586:2018 (2018) Plastics – Determination of fracture toughness (GIC and KIC) – Linear elastic fracture mechanics (LEFM) approach, Standard, International Organization for Standardization, Geneva, CH ISO, 13586:2018 (2018) Plastics – Determination of fracture toughness (GIC and KIC) – Linear elastic fracture mechanics (LEFM) approach, Standard, International Organization for Standardization, Geneva, CH
77.
Zurück zum Zitat ASTM, D1708 - 18 (2018) Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens, Standard, ASTM International, West Conshohocken, PA ASTM, D1708 - 18 (2018) Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens, Standard, ASTM International, West Conshohocken, PA
78.
Zurück zum Zitat ASTM, D1876–08, (2015) e1: Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). Standard, ASTM International, West Conshohocken, PA, p 2015 ASTM, D1876–08, (2015) e1: Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). Standard, ASTM International, West Conshohocken, PA, p 2015
79.
Zurück zum Zitat ASTM, D1938 - 19 (2019) Standard Test Method for Tear-Propagation Resistance (Trouser Tear) of Plastic Film and Thin Sheeting by a Single-Tear Method, Standard, ASTM International, West Conshohocken, PA ASTM, D1938 - 19 (2019) Standard Test Method for Tear-Propagation Resistance (Trouser Tear) of Plastic Film and Thin Sheeting by a Single-Tear Method, Standard, ASTM International, West Conshohocken, PA
80.
Zurück zum Zitat ASTM, D3039/D3039M - 17 (2017) Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Standard, ASTM International, West Conshohocken, PA ASTM, D3039/D3039M - 17 (2017) Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Standard, ASTM International, West Conshohocken, PA
81.
Zurück zum Zitat ASTM, D3518/D3518M - 18 (2018) Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a \(\pm 45^\circ\) Laminate, Standard, ASTM International, West Conshohocken, PA ASTM, D3518/D3518M - 18 (2018) Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a \(\pm 45^\circ\) Laminate, Standard, ASTM International, West Conshohocken, PA
82.
Zurück zum Zitat ASTM, D5528 - 13 (2013) Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, Standard, ASTM International, West Conshohocken, PA ASTM, D5528 - 13 (2013) Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, Standard, ASTM International, West Conshohocken, PA
83.
Zurück zum Zitat ASTM, D6671/D6671M - 19 (2019) Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, Standard, ASTM International, West Conshohocken, PA ASTM, D6671/D6671M - 19 (2019) Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, Standard, ASTM International, West Conshohocken, PA
84.
Zurück zum Zitat ASTM, D7905/D7905M - 19e1 (2019) Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, Standard, ASTM International, West Conshohocken, PA ASTM, D7905/D7905M - 19e1 (2019) Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, Standard, ASTM International, West Conshohocken, PA
85.
Zurück zum Zitat ASTM, D792 - 13 (2013) Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, Standard, ASTM International, West Conshohocken, PA ASTM, D792 - 13 (2013) Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, Standard, ASTM International, West Conshohocken, PA
86.
Zurück zum Zitat PN, EN 10045:1994 (1994) Metallic Materials - Charpy Impact Test, Standard, International Organization for Standardization, Geneva, CH PN, EN 10045:1994 (1994) Metallic Materials - Charpy Impact Test, Standard, International Organization for Standardization, Geneva, CH
Metadaten
Titel
Fracture testing of polymer materials processed via fused filament fabrication: a survey of materials, methods, and design applications
verfasst von
Albert E. Patterson
Charul Chadha
Iwona M. Jasiuk
James T. Allison
Publikationsdatum
18.06.2021
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 4/2021
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-021-00196-0

Weitere Artikel der Ausgabe 4/2021

Progress in Additive Manufacturing 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.