Skip to main content
Erschienen in: Soft Computing 20/2020

18.04.2020 | Methodologies and Application

Frequency domain CNN and dissipated energy approach for damage detection in building structures

verfasst von: Mario Lopez-Pacheco, Jesús Morales-Valdez, Wen Yu

Erschienen in: Soft Computing | Ausgabe 20/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent developments tools and techniques for structural health monitoring allow the design of early warning systems for the damage diagnosis and structural assessment. Most methods to damage detection involve vibration data analysis by using identification systems that generally require a mathematical model and much information about the system, such as parameters and states that are mostly unknown. In this paper, a novel frequency domain convolutional neural network (FDCNN) proposed aims to design an identification system for damage detection based on Bouc–Wen hysteretic model. FDCNN, unlike other works, only requires acceleration measurements for damage diagnosis that are very sensitive to environmental noise. In contrast to neural network (NN) and time domain convolutional neural network, FDCNN reduces the computational time required for the learning stage and adds robustness against noise in data. The FDCNN includes random filters in the frequency domain to avoid measurement noise using a spectral pooling operation, which is useful when the system bandwidth is unknown. Incorrect filtering can produce unwanted results, as a shifted and attenuation signal relative to the original. Moreover, FDCNN allows overcoming the parameterization problem in nonlinear systems, which is often difficult to achieve. In order to validate the proposed methodology, a comparison between two different architectures of convolutional neural networks is made, showing that proposed CNN in frequency domain brings better performance in the identification system for damage diagnosis in building structures. Experimental results from reducing scale two-storey building confirm the effectiveness of the proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The energy of the building is estimated using the CNN output together with the velocity of each floor.
 
Literatur
Zurück zum Zitat Abdeljaber O, Avci O, Kiranyaz S, Gabbouj M, Inman DJ (2017) Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J Sound Vib 388:154–170CrossRef Abdeljaber O, Avci O, Kiranyaz S, Gabbouj M, Inman DJ (2017) Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J Sound Vib 388:154–170CrossRef
Zurück zum Zitat Appana DK, Prosvirin A, Kim J-M (2018) Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks. Soft Comput 22(20):6719–6729CrossRef Appana DK, Prosvirin A, Kim J-M (2018) Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks. Soft Comput 22(20):6719–6729CrossRef
Zurück zum Zitat Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415MathSciNetMATHCrossRef Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415MathSciNetMATHCrossRef
Zurück zum Zitat Arqub OA, Mohammed AL-S, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302MATHCrossRef Arqub OA, Mohammed AL-S, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302MATHCrossRef
Zurück zum Zitat Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206MATHCrossRef Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206MATHCrossRef
Zurück zum Zitat Atha DJ, Jahanshahi MR (2018) Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct Health Monit 17(5):1110–1128CrossRef Atha DJ, Jahanshahi MR (2018) Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct Health Monit 17(5):1110–1128CrossRef
Zurück zum Zitat Bouti A, Mahraz MA, Riffi J, Tairi H (2018) A robust system for road sign detection and classification using lenet architecture based on convolutional neural network. Soft Comput 24:6721–6733 CrossRef Bouti A, Mahraz MA, Riffi J, Tairi H (2018) A robust system for road sign detection and classification using lenet architecture based on convolutional neural network. Soft Comput 24:6721–6733 CrossRef
Zurück zum Zitat Bursi OS, Ceravolo R, Erlicher S, Zanotti Fragonara L (2013) Identification of the hysteretic behaviour of a partial-strength steel-concrete moment-resisting frame structure subject to pseudodynamic tests. Earthq Eng Struct Dyn 41(14):1883–1903CrossRef Bursi OS, Ceravolo R, Erlicher S, Zanotti Fragonara L (2013) Identification of the hysteretic behaviour of a partial-strength steel-concrete moment-resisting frame structure subject to pseudodynamic tests. Earthq Eng Struct Dyn 41(14):1883–1903CrossRef
Zurück zum Zitat Carden EP, Fanning P (2004) Vibration based condition monitoring: a review. Struct Health Monit 3:355–377CrossRef Carden EP, Fanning P (2004) Vibration based condition monitoring: a review. Struct Health Monit 3:355–377CrossRef
Zurück zum Zitat Ceravolo R, Erlicher S, Fragonara LZ (2013) Comparison of restoring force models for the identification of structures with hysteresis and degradation. J Sound Vib 332(26):6982–6999CrossRef Ceravolo R, Erlicher S, Fragonara LZ (2013) Comparison of restoring force models for the identification of structures with hysteresis and degradation. J Sound Vib 332(26):6982–6999CrossRef
Zurück zum Zitat Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput Aided Civ Infrastruct Eng 32(5):361–378CrossRef Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput Aided Civ Infrastruct Eng 32(5):361–378CrossRef
Zurück zum Zitat Charles RF, Keith W, Michael DT, Gyuhae P, Jonathon N, Douglas EA, Matthew TB, Kevin F (2007) Nonlinear system identification for damage detection. In: Report LA-14353, Los Alamos National Laboratory (LANL), Los Alamos, NM, pp 1–161 Charles RF, Keith W, Michael DT, Gyuhae P, Jonathon N, Douglas EA, Matthew TB, Kevin F (2007) Nonlinear system identification for damage detection. In: Report LA-14353, Los Alamos National Laboratory (LANL), Los Alamos, NM, pp 1–161
Zurück zum Zitat Chatzi EN, Smyth AW, Masri SF (2010) Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty. Struct Saf 32(5):326–337CrossRef Chatzi EN, Smyth AW, Masri SF (2010) Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty. Struct Saf 32(5):326–337CrossRef
Zurück zum Zitat Chen S, Billings S, Grant P (1990) Non-linear system identification using neural networks. Int J Control 51(6):1191–1214MATHCrossRef Chen S, Billings S, Grant P (1990) Non-linear system identification using neural networks. Int J Control 51(6):1191–1214MATHCrossRef
Zurück zum Zitat Chopra AK (1995) Dynamics of structures: theory and applications to earthquake engineering, 1st edn. Prentice-Hall International series Chopra AK (1995) Dynamics of structures: theory and applications to earthquake engineering, 1st edn. Prentice-Hall International series
Zurück zum Zitat Cooley JW, Lewis PA, Welch PD (1969) The fast Fourier transform and its applications. IEEE Trans Educ 12(1):27–34CrossRef Cooley JW, Lewis PA, Welch PD (1969) The fast Fourier transform and its applications. IEEE Trans Educ 12(1):27–34CrossRef
Zurück zum Zitat Das S, Saha P, Patro S (2016) Vibration-based damage detection techniques used for health monitoring of structures: a review. J Civ Struct Health Monit 6(3):477–507CrossRef Das S, Saha P, Patro S (2016) Vibration-based damage detection techniques used for health monitoring of structures: a review. J Civ Struct Health Monit 6(3):477–507CrossRef
Zurück zum Zitat Doebling SW, Farrar C, Prime MB (1998) A summary review of vibration-based damage identification methods. Shock Vib Dig 30(2):1–34CrossRef Doebling SW, Farrar C, Prime MB (1998) A summary review of vibration-based damage identification methods. Shock Vib Dig 30(2):1–34CrossRef
Zurück zum Zitat Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative tudy. Struct Health Monit 10:83–111CrossRef Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative tudy. Struct Health Monit 10:83–111CrossRef
Zurück zum Zitat Farrar C, Doebling S, Nix D (2001) Vibration-based structural damage identification. Philos Trans R Soc 359(1778):131–149MATHCrossRef Farrar C, Doebling S, Nix D (2001) Vibration-based structural damage identification. Philos Trans R Soc 359(1778):131–149MATHCrossRef
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–256
Zurück zum Zitat Hibberler RC (2011) Mechanics of materials, 8th edn. Prentice Hall, pp 1–888 Hibberler RC (2011) Mechanics of materials, 8th edn. Prentice Hall, pp 1–888
Zurück zum Zitat Ikhouane FA, MañOsa VC, Rodellar J (2005) Adaptive control of a hysteretic structural system. Automatica 41(2):225–231 Ikhouane FA, MañOsa VC, Rodellar J (2005) Adaptive control of a hysteretic structural system. Automatica 41(2):225–231
Zurück zum Zitat Kong X, Cai C-S, Hu J (2017) The state-of-the-art on framework of vibration-based structural damage identification for decision making. Appl Sci 7(5):497–510CrossRef Kong X, Cai C-S, Hu J (2017) The state-of-the-art on framework of vibration-based structural damage identification for decision making. Appl Sci 7(5):497–510CrossRef
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Zurück zum Zitat Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113CrossRef Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113CrossRef
Zurück zum Zitat LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551CrossRef LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551CrossRef
Zurück zum Zitat Lin Y-Z, Nie Z-H, Ma H-W (2017) Structural damage detection with automatic feature-extraction through deep learning. Comput Aided Civ Infrastruct Eng 32(12):1025–1046CrossRef Lin Y-Z, Nie Z-H, Ma H-W (2017) Structural damage detection with automatic feature-extraction through deep learning. Comput Aided Civ Infrastruct Eng 32(12):1025–1046CrossRef
Zurück zum Zitat Liu R, Yang B, Zio E, Chen X (2018a) Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech Syst Signal Process 108:32–47 Liu R, Yang B, Zio E, Chen X (2018a) Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech Syst Signal Process 108:32–47
Zurück zum Zitat Liu Y, Huang H, Cao J, Huang T (2018b) Convolutional neural networks-based intelligent recognition of chinese license plates. Soft Comput 22(7):2403–2419CrossRef Liu Y, Huang H, Cao J, Huang T (2018b) Convolutional neural networks-based intelligent recognition of chinese license plates. Soft Comput 22(7):2403–2419CrossRef
Zurück zum Zitat Loh C-H, Mao C-H, Huang J-R, Pan T-C (2011) System identification and damage evaluation of degrading hysteresis of reinforced concrete frames. Earthq Eng Struct Dyn 40(6):623–640CrossRef Loh C-H, Mao C-H, Huang J-R, Pan T-C (2011) System identification and damage evaluation of degrading hysteresis of reinforced concrete frames. Earthq Eng Struct Dyn 40(6):623–640CrossRef
Zurück zum Zitat Ma F, Zhang H, Bockstedte A, Foliente GC, Paevere P (2004b) Parameter analysis of the differential model of hysteresis. J Appl Mech 71(3):342–349MATHCrossRef Ma F, Zhang H, Bockstedte A, Foliente GC, Paevere P (2004b) Parameter analysis of the differential model of hysteresis. J Appl Mech 71(3):342–349MATHCrossRef
Zurück zum Zitat Ma F, Ng CH, Ajavakom N (2006) On system identification and response prediction of degrading structures. Struct Control Health Monit 13:347–364CrossRef Ma F, Ng CH, Ajavakom N (2006) On system identification and response prediction of degrading structures. Struct Control Health Monit 13:347–364CrossRef
Zurück zum Zitat Ma S, Cai W, Liu W, Shang Z, Liu G (2019) A lighted deep convolutional neural network based fault diagnosis of rotating machinery. Sensor 19(10):2381CrossRef Ma S, Cai W, Liu W, Shang Z, Liu G (2019) A lighted deep convolutional neural network based fault diagnosis of rotating machinery. Sensor 19(10):2381CrossRef
Zurück zum Zitat Maia NMM, Silva JMM, Almas EAM, Sampaio RPC (2003) Damage detection in structures: from mode shape to frequency response function methods. Mech Syst Signal Process 17(3):489–498CrossRef Maia NMM, Silva JMM, Almas EAM, Sampaio RPC (2003) Damage detection in structures: from mode shape to frequency response function methods. Mech Syst Signal Process 17(3):489–498CrossRef
Zurück zum Zitat Modarres C, Astorga N, Droguett EL, Meruane V (2018) Convolutional neural networks for automated damage recognition and damage type identification. Struct Control Health Monit 25:e2230CrossRef Modarres C, Astorga N, Droguett EL, Meruane V (2018) Convolutional neural networks for automated damage recognition and damage type identification. Struct Control Health Monit 25:e2230CrossRef
Zurück zum Zitat Pau A, Vestroni F (2013) Vibration assessment and structural monitoring of the basilica of maxentius in rome. Mech Syst Signal Process 41:454–466CrossRef Pau A, Vestroni F (2013) Vibration assessment and structural monitoring of the basilica of maxentius in rome. Mech Syst Signal Process 41:454–466CrossRef
Zurück zum Zitat Rahai A, Bakhtiari-Nejad F, Esfandiari A (2007) Damage assessment of structure using incomplete measured mode shapes. Struct Control Health Monit 14:808–829CrossRef Rahai A, Bakhtiari-Nejad F, Esfandiari A (2007) Damage assessment of structure using incomplete measured mode shapes. Struct Control Health Monit 14:808–829CrossRef
Zurück zum Zitat Rippel O, Snoek J, Adams RP (2015) Spectral representations for convolutional neural networks. In: Advances in neural information processing systems, pp 2449–2457 Rippel O, Snoek J, Adams RP (2015) Spectral representations for convolutional neural networks. In: Advances in neural information processing systems, pp 2449–2457
Zurück zum Zitat Roux P, Guéguen P, Baillet L, Hamze A (2014) Structural-change localization and monitoring through a perturbation-based inverse problem. Acoust Soc Am 136:2586–2597CrossRef Roux P, Guéguen P, Baillet L, Hamze A (2014) Structural-change localization and monitoring through a perturbation-based inverse problem. Acoust Soc Am 136:2586–2597CrossRef
Zurück zum Zitat Rucevskis S, Janeliukstis R, Akishin P, Chate A (2016) Mode shape-based damage detection in plate structure without baseline data. Struct Control Health Monit 23:1180–1193CrossRef Rucevskis S, Janeliukstis R, Akishin P, Chate A (2016) Mode shape-based damage detection in plate structure without baseline data. Struct Control Health Monit 23:1180–1193CrossRef
Zurück zum Zitat Shan J, Shi W, Lu X (2016a) Model-reference health monitoring of hysteretic building structure using acceleration measurement with test validation. Comput Aided Civ Infrastruct Eng 31:449–464CrossRef Shan J, Shi W, Lu X (2016a) Model-reference health monitoring of hysteretic building structure using acceleration measurement with test validation. Comput Aided Civ Infrastruct Eng 31:449–464CrossRef
Zurück zum Zitat Simard PY, Steinkraus D, Platt JC, et al (2003) Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol 3 Simard PY, Steinkraus D, Platt JC, et al (2003) Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol 3
Zurück zum Zitat Sohn H, Farrar C, Hemez F, Devin DS, Daniel WS, Brett RN, Jerry JC (2003) A review of structural health monitoring literature: 1996–2001. In: Los Alamos National Laboratory report, LA-13976-MS, pp 1–331 Sohn H, Farrar C, Hemez F, Devin DS, Daniel WS, Brett RN, Jerry JC (2003) A review of structural health monitoring literature: 1996–2001. In: Los Alamos National Laboratory report, LA-13976-MS, pp 1–331
Zurück zum Zitat Udmale SS, Patil SS, Phalle VM, Singh SK (2019) A bearing vibration data analysis based on spectral kurtosis and convnet. Soft Comput 23(19):9341–9359CrossRef Udmale SS, Patil SS, Phalle VM, Singh SK (2019) A bearing vibration data analysis based on spectral kurtosis and convnet. Soft Comput 23(19):9341–9359CrossRef
Zurück zum Zitat Vidal F, Navarro M, Aranda C, Enomoto T (2014) Changes in dynamic characteristics of lorca rc buildings from pre- and post-earthquake ambient vibration data. Bull Earthq Eng 12:2095–2110CrossRef Vidal F, Navarro M, Aranda C, Enomoto T (2014) Changes in dynamic characteristics of lorca rc buildings from pre- and post-earthquake ambient vibration data. Bull Earthq Eng 12:2095–2110CrossRef
Zurück zum Zitat Vu T-D, Ho N-H, Yang H-J, Kim J, Song H-C (2018) Non-white matter tissue extraction and deep convolutional neural network for alzheimer’s disease detection. Soft Comput 22(20):6825–6833CrossRef Vu T-D, Ho N-H, Yang H-J, Kim J, Song H-C (2018) Non-white matter tissue extraction and deep convolutional neural network for alzheimer’s disease detection. Soft Comput 22(20):6825–6833CrossRef
Zurück zum Zitat Wan Z, Wang T, Li S, Zhang Z (2018) A modified particle filter for parameter identification with unknown inputs. Struct Control Health Monit 25:e2268CrossRef Wan Z, Wang T, Li S, Zhang Z (2018) A modified particle filter for parameter identification with unknown inputs. Struct Control Health Monit 25:e2268CrossRef
Zurück zum Zitat Wen YK (1976) Method for random vibration of hysteretic system. J Eng Mech Div 102(2):249–263 Wen YK (1976) Method for random vibration of hysteretic system. J Eng Mech Div 102(2):249–263
Zurück zum Zitat Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237CrossRef Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237CrossRef
Zurück zum Zitat Zhu H, Li L, He X-Q (2011) Damage detection method for shear buildings using the changes in the first mode shape slopes. Comput Struct 89(9–10):733–743CrossRef Zhu H, Li L, He X-Q (2011) Damage detection method for shear buildings using the changes in the first mode shape slopes. Comput Struct 89(9–10):733–743CrossRef
Zurück zum Zitat Zou Y, Tong L, Steven GP (2000) Vibration-based model dependent damage (delamination) identification and health monitoring for composite structures: a review. J Sound Vib 230:357–378CrossRef Zou Y, Tong L, Steven GP (2000) Vibration-based model dependent damage (delamination) identification and health monitoring for composite structures: a review. J Sound Vib 230:357–378CrossRef
Metadaten
Titel
Frequency domain CNN and dissipated energy approach for damage detection in building structures
verfasst von
Mario Lopez-Pacheco
Jesús Morales-Valdez
Wen Yu
Publikationsdatum
18.04.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 20/2020
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-020-04912-w

Weitere Artikel der Ausgabe 20/2020

Soft Computing 20/2020 Zur Ausgabe