Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.04.2020 | Methodologies and Application | Ausgabe 20/2020

Soft Computing 20/2020

Fusion of deep-learned and hand-crafted features for cancelable recognition systems

Zeitschrift:
Soft Computing > Ausgabe 20/2020
Autoren:
Essam Abdellatef, Eman M. Omran, Randa F. Soliman, Nabil A. Ismail, Salah Eldin S. E. Abd Elrahman, Khalid N. Ismail, Mohamed Rihan, Fathi E. Abd El-Samie, Ayman A. Eisa
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The recent years have witnessed a dramatic shift in the way of biometric identification, authentication, and security processes. Among the essential challenges that face these processes are the online verification and authentication. These challenges lie in the complexity of such processes, the necessity of the personal real-time identifiable information, and the methodology to capture temporal information. In this paper, we present an integrated biometric recognition method to jointly recognize face, iris, palm print, fingerprint and ear biometrics. The proposed method is based on the integration of the extracted deep-learned features together with the hand-crafted ones by using a fusion network. Also, we propose a novel convolutional neural network (CNN)-based model for deep feature extraction. In addition, several techniques are exploited to extract the hand-crafted features such as histogram of oriented gradients (HOG), oriented rotated brief (ORB), local binary patterns (LBPs), scale-invariant feature transform (SIFT), and speeded-up robust features (SURF). Furthermore, for dimensional consistency between the combined features, the dimensions of the hand-crafted features are reduced using independent component analysis (ICA) or principal component analysis (PCA). The core of this paper is the template protection via a cancelable biometric scheme without significantly affecting the recognition performance. Specifically, we have used the bio-convolving approach to enhance the user’s privacy and ensure the robustness against spoof attacks. Additionally, various CNN hyper-parameters with their impact on the proposed model performance are studied. Our experiments on various datasets revealed that the proposed method achieves 96.69%, 95.59%, 97.34%, 96.11% and 99.22% recognition accuracies for face, iris, fingerprint, palm print and ear recognition, respectively.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 20/2020

Soft Computing 20/2020 Zur Ausgabe

Premium Partner

    Bildnachweise