Skip to main content

2013 | OriginalPaper | Buchkapitel

7. Frequency Response Analysis

verfasst von : Sivaji Chakravorti, Debangshu Dey, Biswendu Chatterjee

Erschienen in: Recent Trends in the Condition Monitoring of Transformers

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the last few decades it has been recognized that Frequency Response Analysis (FRA) is a reliable method for detecting dimensional changes in the transformer windings. Out of the two methods of FRA, swept frequency response analysis (SFRA) has gained popularity over the impulse frequency response analysis (IFRA) with the passage of time, although the later was developed first. SFRA is an offline, non-invasive, terminal-based low-voltage measurement, the primary objective of which is to detect even small mechanical deformations accurately. In SFRA the excitation signal of a given frequency is injected to one terminal of the transformer and the response signal is measured at the other end of the winding or at another terminal. Then the transfer function of the winding is computed from the measured excitation and response signals. The frequency of excitation signal is varied over a wide range to detect the deviations in the FRA response, with the help of which the nature of the mechanical fault as well as the quality of insulation could be judged. Frequency dependent parameters of winding such as inductances and capacitances determine the resonant frequencies which appear as peaks and valleys in the FRA transfer functions. Such resonances, which are governed by the poles and zeros of the equivalent network of the transformer winding, appearing in the test case is compared to a no-fault case for identification of fault, if any. There are several comparison techniques that are being used in practice and sometimes more than one technique need to be used simultaneously to arrive at an unambiguous decision. In FRA evaluation processes, it is important to identify the factors that affect the transformer responses in different frequency ranges. There are several terminal configurations of FRA test that may be employed in practice. The sensitivity of the terminal configuration in the detection of mechanical faults is an important issue in FRA. Accurate simulation of FRA response of transformer windings, not only in isolation but also for two-winding transformers, is required for identifying FRA features that could be used for accurate fault identification within an integrated framework. Development of suitable online monitoring system based on SFRA will be helpful in identifying small mechanical faults within transformers in service before such small faults could lead to major faults with severe consequences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Malewski R, Poulin B (1985) Digital monitoring techniques for high voltage impulse tests. IEEE Trans Power Apparatus Sys PAS-104:3108–3114 Malewski R, Poulin B (1985) Digital monitoring techniques for high voltage impulse tests. IEEE Trans Power Apparatus Sys PAS-104:3108–3114
2.
Zurück zum Zitat Malewski R, Poulin B (1988) Impulse testing of power transformers using the transfer function method. IEEE Trans Power Deliv 3(2):476–489CrossRef Malewski R, Poulin B (1988) Impulse testing of power transformers using the transfer function method. IEEE Trans Power Deliv 3(2):476–489CrossRef
3.
Zurück zum Zitat Ragavan K, Satish L (2007) Localization of changes of model winding based on terminal measurements: experimental study. IEEE Trans Power Deliv 22(3):1557–1565CrossRef Ragavan K, Satish L (2007) Localization of changes of model winding based on terminal measurements: experimental study. IEEE Trans Power Deliv 22(3):1557–1565CrossRef
4.
Zurück zum Zitat Satish L, Sahoo SK (2009) Locating fault in a transformer winding: an experimental study. Electric Power Sys Res 79:89–97CrossRef Satish L, Sahoo SK (2009) Locating fault in a transformer winding: an experimental study. Electric Power Sys Res 79:89–97CrossRef
5.
Zurück zum Zitat Lech W, Tyminski L (1966) Detecting transformer winding damage – The low voltage impulse method. Electr Rev 179(21):768–772 Lech W, Tyminski L (1966) Detecting transformer winding damage – The low voltage impulse method. Electr Rev 179(21):768–772
6.
Zurück zum Zitat Waters M, Stalewski A, Farr JC, Whitaker JD (1968) Short-circuit testing of power transformers and the detection and location of damage, CIGRE paper no. 12-05 Waters M, Stalewski A, Farr JC, Whitaker JD (1968) Short-circuit testing of power transformers and the detection and location of damage, CIGRE paper no. 12-05
7.
Zurück zum Zitat Rogers EJ, Humbard LE, Gillies DA (1972) Instrumentation techniques for low voltage impulse testing of power transformers. IEEE Trans Power Apparatus Sys PAS-91:1281–1293 Rogers EJ, Humbard LE, Gillies DA (1972) Instrumentation techniques for low voltage impulse testing of power transformers. IEEE Trans Power Apparatus Sys PAS-91:1281–1293
8.
Zurück zum Zitat Ryder S (2003) Diagnosing transformer faults using frequency response analysis. IEEE Electr Insul Mag 19(2):16–22CrossRef Ryder S (2003) Diagnosing transformer faults using frequency response analysis. IEEE Electr Insul Mag 19(2):16–22CrossRef
9.
Zurück zum Zitat Ryder S, Tenbohlen S (2003) Comparison of swept frequency and impulse response methods for making FRA measurements. In: Proceeding of conference of doble clients, Boston Ryder S, Tenbohlen S (2003) Comparison of swept frequency and impulse response methods for making FRA measurements. In: Proceeding of conference of doble clients, Boston
10.
Zurück zum Zitat Dick EP, Erven CC (1978) Transformer diagnostic testing by frequency response analysis. IEEE Trans Power Apparatus Sys PAS-97:2144–2153 Dick EP, Erven CC (1978) Transformer diagnostic testing by frequency response analysis. IEEE Trans Power Apparatus Sys PAS-97:2144–2153
11.
Zurück zum Zitat Vaessen PTM, Hanique E (1992) A new frequency response analysis method for power transformers. IEEE Trans Power Deliv 7(1):384–391CrossRef Vaessen PTM, Hanique E (1992) A new frequency response analysis method for power transformers. IEEE Trans Power Deliv 7(1):384–391CrossRef
12.
Zurück zum Zitat IEEE PC57.149/D1 (2006) Draft trial use guide for the application and interpretation of frequency response analysis for oil immersed transformers IEEE PC57.149/D1 (2006) Draft trial use guide for the application and interpretation of frequency response analysis for oil immersed transformers
13.
Zurück zum Zitat Ryder S (2001) Frequency response analysis for diagnostic testing of power transformers. Electr Today 13(6):14–19 Ryder S (2001) Frequency response analysis for diagnostic testing of power transformers. Electr Today 13(6):14–19
14.
Zurück zum Zitat Kim JW, Park BK, Jeong SC, Kim SW, Park PG (2005) Fault diagnosis of a power transformer using an improved frequency response analysis. IEEE Trans Power Deliv 20(1):169–178CrossRef Kim JW, Park BK, Jeong SC, Kim SW, Park PG (2005) Fault diagnosis of a power transformer using an improved frequency response analysis. IEEE Trans Power Deliv 20(1):169–178CrossRef
15.
Zurück zum Zitat Wang ZD, Li J, Sofian DM (2009) Interpretation of transformer FRA responses - Part I: influence of winding structure. IEEE Trans Power Deliv 24(2):703–710CrossRef Wang ZD, Li J, Sofian DM (2009) Interpretation of transformer FRA responses - Part I: influence of winding structure. IEEE Trans Power Deliv 24(2):703–710CrossRef
16.
Zurück zum Zitat Ragavan K, Satish L (2005) An efficient method to compute transfer function of a transformer from its equivalent circuit. IEEE Trans Power Deliv 20(2):780–788CrossRef Ragavan K, Satish L (2005) An efficient method to compute transfer function of a transformer from its equivalent circuit. IEEE Trans Power Deliv 20(2):780–788CrossRef
17.
Zurück zum Zitat Satish L, Jain A (2002) Structure of transfer function of transformers with special reference to interleaved windings. IEEE Trans Power Deliv 17(3):754–760CrossRef Satish L, Jain A (2002) Structure of transfer function of transformers with special reference to interleaved windings. IEEE Trans Power Deliv 17(3):754–760CrossRef
18.
Zurück zum Zitat Jayasinghe JASB, Wang ZD, Jarman PN, Darwin AW (2006) Winding movement in power transformers: a comparison of FRA measurement connection methods. IEEE Trans Dielectr Electr Insul 13(6):1342–1349CrossRef Jayasinghe JASB, Wang ZD, Jarman PN, Darwin AW (2006) Winding movement in power transformers: a comparison of FRA measurement connection methods. IEEE Trans Dielectr Electr Insul 13(6):1342–1349CrossRef
19.
Zurück zum Zitat Satish L, Sahoo SK (2005) An effort to understand what factors affect the transfer function of a two-winding transformer. IEEE Trans Power Deliv 20(2):1430–1440CrossRef Satish L, Sahoo SK (2005) An effort to understand what factors affect the transfer function of a two-winding transformer. IEEE Trans Power Deliv 20(2):1430–1440CrossRef
20.
Zurück zum Zitat Abeywickrama KGNB, Serdyuk YV, Gubanski SM (2006) Exploring possibilities for characterization of power transformer insulation by frequency response analysis (FRA). IEEE Trans Power Deliv 21(3):1375–1382CrossRef Abeywickrama KGNB, Serdyuk YV, Gubanski SM (2006) Exploring possibilities for characterization of power transformer insulation by frequency response analysis (FRA). IEEE Trans Power Deliv 21(3):1375–1382CrossRef
21.
Zurück zum Zitat Sofian DM, Wang ZD, Li J (2010) Interpretation of transformer FRA responses-part II: influence of transformer structure. IEEE Trans Power Deliv 25(4):2582–2589CrossRef Sofian DM, Wang ZD, Li J (2010) Interpretation of transformer FRA responses-part II: influence of transformer structure. IEEE Trans Power Deliv 25(4):2582–2589CrossRef
22.
Zurück zum Zitat Shintemirov A, Tang WH, Wu QH (2010) Transformer winding condition assessment using frequency response analysis and evidential reasoning. IET Electr Power Appl 4(3):198–212CrossRef Shintemirov A, Tang WH, Wu QH (2010) Transformer winding condition assessment using frequency response analysis and evidential reasoning. IET Electr Power Appl 4(3):198–212CrossRef
23.
Zurück zum Zitat Pramanik S, Satish L (2011) Localisation of discrete change in a transformer winding: a network-function-loci approach. IET Electr Power Appl 5(6):540–548CrossRef Pramanik S, Satish L (2011) Localisation of discrete change in a transformer winding: a network-function-loci approach. IET Electr Power Appl 5(6):540–548CrossRef
24.
Zurück zum Zitat Prout P, Lawrence M, McGrail T, Sweetser C (2004) Substation diagnostics with SFRA: transformers, line traps and synchronous compensators. In: Proceeding of EPRI substation diagnostics conference XIII, New Orleans, p 22 Prout P, Lawrence M, McGrail T, Sweetser C (2004) Substation diagnostics with SFRA: transformers, line traps and synchronous compensators. In: Proceeding of EPRI substation diagnostics conference XIII, New Orleans, p 22
25.
Zurück zum Zitat Kennedy GM, McGrail AJ, Lapworth JA (2007) Transformer sweep frequency response analysis (SFRA), Energize, pp 28–33 Kennedy GM, McGrail AJ, Lapworth JA (2007) Transformer sweep frequency response analysis (SFRA), Energize, pp 28–33
26.
Zurück zum Zitat Wang M, Vandermaar AJ, Srivastava KD (2004) Transformer winding movement monitoring in service – Key factors affecting FRA measurements. IEEE Electr Insul Mag 20(5):5–12CrossRef Wang M, Vandermaar AJ, Srivastava KD (2004) Transformer winding movement monitoring in service – Key factors affecting FRA measurements. IEEE Electr Insul Mag 20(5):5–12CrossRef
27.
Zurück zum Zitat Reykherdt AA, Davydov V (2011) Case studies of factors influencing frequency response analysis measurements and power transformer diagnostics. IEEE Electr Insul Mag 27(1):22–30CrossRef Reykherdt AA, Davydov V (2011) Case studies of factors influencing frequency response analysis measurements and power transformer diagnostics. IEEE Electr Insul Mag 27(1):22–30CrossRef
28.
Zurück zum Zitat Abeywickrama N, Serdyuk YV, Gubanski SM (2008) High frequency modeling of power transformers for use in frequency response analysis (FRA). IEEE Trans Power Deliv 23(4):2042–2049CrossRef Abeywickrama N, Serdyuk YV, Gubanski SM (2008) High frequency modeling of power transformers for use in frequency response analysis (FRA). IEEE Trans Power Deliv 23(4):2042–2049CrossRef
29.
Zurück zum Zitat Abeywickrama N, Serdyuk YV, Gubanski SM (2008) Effect of core magnetization on frequency response analysis (FRA) of power transformers. IEEE Trans Power Deliv 23(3):1432–1438CrossRef Abeywickrama N, Serdyuk YV, Gubanski SM (2008) Effect of core magnetization on frequency response analysis (FRA) of power transformers. IEEE Trans Power Deliv 23(3):1432–1438CrossRef
30.
Zurück zum Zitat Wang M (2003) Winding movement and condition monitoring of power transformers in service. Ph.D. Dissertation, University of British Columbia, Vancouver Wang M (2003) Winding movement and condition monitoring of power transformers in service. Ph.D. Dissertation, University of British Columbia, Vancouver
31.
Zurück zum Zitat Birlasekaran S, Fetherston F (1999) Off/on-line FRA condition monitoring technique for power transformer. IEEE Power Eng Rev 19(8):54–56CrossRef Birlasekaran S, Fetherston F (1999) Off/on-line FRA condition monitoring technique for power transformer. IEEE Power Eng Rev 19(8):54–56CrossRef
32.
Zurück zum Zitat Leibfried T, Feser K (1999) Monitoring of power transformers using the transfer function method. IEEE Trans Power Deliv 14(4):1333–1341CrossRef Leibfried T, Feser K (1999) Monitoring of power transformers using the transfer function method. IEEE Trans Power Deliv 14(4):1333–1341CrossRef
33.
Zurück zum Zitat Wimmer R, Feser K (2004) Calculation of the transfer function of a power transformer with online measuring data. In: Proceeding of advance in processing, testing and application of dielectric materials (APTADM 2004), Wroclaw, Poland, 15–17 Sept 2004 Wimmer R, Feser K (2004) Calculation of the transfer function of a power transformer with online measuring data. In: Proceeding of advance in processing, testing and application of dielectric materials (APTADM 2004), Wroclaw, Poland, 15–17 Sept 2004
34.
Zurück zum Zitat Behjat V, Vahedi A, Setayeshmehr A, Borsi H, Gockenbach E (2011) Diagnosing shorted turns on the windings of power transformers based upon online FRA using capacitive and inductive couplings. IEEE Trans Power Deliv 26(4):2123–2133CrossRef Behjat V, Vahedi A, Setayeshmehr A, Borsi H, Gockenbach E (2011) Diagnosing shorted turns on the windings of power transformers based upon online FRA using capacitive and inductive couplings. IEEE Trans Power Deliv 26(4):2123–2133CrossRef
Metadaten
Titel
Frequency Response Analysis
verfasst von
Sivaji Chakravorti
Debangshu Dey
Biswendu Chatterjee
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5550-8_7