Skip to main content

2013 | OriginalPaper | Buchkapitel

FRET Analysis of Protein-Lipid Interactions

verfasst von : Galyna Gorbenko, Paavo K. J. Kinnunen

Erschienen in: Fluorescent Methods to Study Biological Membranes

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Förster resonance energy transfer (FRET) is an old but constantly developing spectroscopic tool possessing enormous potential for studies on structure and dynamics of biological macromolecules and their assemblies. One of the main advantages of FRET technique is the possibility of measuring the nanometer-scale distances between donor and acceptor fluorophores. This chapter highlights some aspects of FRET-based monitoring of intermolecular interactions in membrane systems. Analytical model of energy transfer between membrane-associated donors and acceptors randomly distributed over parallel planes separated by a fixed distance is presented. The factors determining the efficiency of energy transfer are considered with special attention to orientational behavior of the donor emission and acceptor absorption transition dipoles. It is demonstrated that FRET can provide proof for specific orientation of the protein molecule relative to lipid-water interface. The applications of FRET to quantification of protein-lipid binding parameters and membrane position of protein fluorophores are exemplified. It is illustrated how FRET may help in obtaining evidence for protein aggregation in a membrane environment and domain formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734CrossRef Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734CrossRef
2.
Zurück zum Zitat Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224CrossRef Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224CrossRef
4.
Zurück zum Zitat Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13CrossRef Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13CrossRef
5.
Zurück zum Zitat Selvin PR (1995) Fluorescence resonance energy transfer. Method Enzymol 246:300–334CrossRef Selvin PR (1995) Fluorescence resonance energy transfer. Method Enzymol 246:300–334CrossRef
6.
Zurück zum Zitat Matko J, Edidin M (1997) Energy transfer methods in detecting molecular clusters on cell surfaces. Method Enzymol 278:444–462CrossRef Matko J, Edidin M (1997) Energy transfer methods in detecting molecular clusters on cell surfaces. Method Enzymol 278:444–462CrossRef
7.
Zurück zum Zitat Wong AP, Groves JT (2002) Molecular topography imaging by intermembrane fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 99:14147–14152CrossRef Wong AP, Groves JT (2002) Molecular topography imaging by intermembrane fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 99:14147–14152CrossRef
8.
Zurück zum Zitat Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83:3652–3664CrossRef Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83:3652–3664CrossRef
9.
Zurück zum Zitat Subramanian M, Jutila A, Kinnunen PKJ (1998) Binding and dissociation of cytochrome c to and from membranes containing acidic phospholipids. Biochemistry 37:1394–1402CrossRef Subramanian M, Jutila A, Kinnunen PKJ (1998) Binding and dissociation of cytochrome c to and from membranes containing acidic phospholipids. Biochemistry 37:1394–1402CrossRef
10.
Zurück zum Zitat Corbalan-Garcia S, Sanchez-Carrillo S, Garcia-Garcia J, Gomez-Fernandez JC (2003) Characterization of the membrane binding mode of the C2 domain of PKCε. Biochemistry 42:11661–11668CrossRef Corbalan-Garcia S, Sanchez-Carrillo S, Garcia-Garcia J, Gomez-Fernandez JC (2003) Characterization of the membrane binding mode of the C2 domain of PKCε. Biochemistry 42:11661–11668CrossRef
11.
Zurück zum Zitat Calleja V, Ameer-Beg SM, Vojnovic B, Woscholski R, Downward J, Larijani B (2003) Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem J 372:33–40CrossRef Calleja V, Ameer-Beg SM, Vojnovic B, Woscholski R, Downward J, Larijani B (2003) Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem J 372:33–40CrossRef
12.
Zurück zum Zitat Chigaev A, Buranda T, Dwyer DC, Prossnitz ER, Sklar LA (2003) FRET detection of cellular α4-integrin conformational activation. Biophys J 85:3951–3962CrossRef Chigaev A, Buranda T, Dwyer DC, Prossnitz ER, Sklar LA (2003) FRET detection of cellular α4-integrin conformational activation. Biophys J 85:3951–3962CrossRef
13.
Zurück zum Zitat Yano Y, Takemoto T, Kobayashi S, Yasui H, Sakurai H, Ohashi W, Niwa M, Futaki S, Sugiura Y, Matsuzaki K (2002) Topological stability and self-association of a completely hydrophobic model transmembrane helix in lipid bilayers. Biochemistry 41:3073–3080CrossRef Yano Y, Takemoto T, Kobayashi S, Yasui H, Sakurai H, Ohashi W, Niwa M, Futaki S, Sugiura Y, Matsuzaki K (2002) Topological stability and self-association of a completely hydrophobic model transmembrane helix in lipid bilayers. Biochemistry 41:3073–3080CrossRef
14.
Zurück zum Zitat You M, Li E, Wimley WC, Hristova K (2005) Förster resonance energy transfer in liposomes: measurements of transmembrane helix dimerization in the native bilayer environment. Anal Biochem 340:154–164CrossRef You M, Li E, Wimley WC, Hristova K (2005) Förster resonance energy transfer in liposomes: measurements of transmembrane helix dimerization in the native bilayer environment. Anal Biochem 340:154–164CrossRef
15.
Zurück zum Zitat Loura LMS, Fernandes F, Prieto M (2010) Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains. Eur Biophys J 39:589–607CrossRef Loura LMS, Fernandes F, Prieto M (2010) Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains. Eur Biophys J 39:589–607CrossRef
16.
Zurück zum Zitat Brown AC, Towles KB, Wrenn SP (2007) Measuring raft size as a function of membrane composition in PC-based systems: part I- binary systems. Langmuir 23:11180–11187CrossRef Brown AC, Towles KB, Wrenn SP (2007) Measuring raft size as a function of membrane composition in PC-based systems: part I- binary systems. Langmuir 23:11180–11187CrossRef
17.
Zurück zum Zitat Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87CrossRef Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87CrossRef
18.
Zurück zum Zitat Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75CrossRef Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75CrossRef
19.
Zurück zum Zitat Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York
20.
Zurück zum Zitat Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH, WeinheimCrossRef Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH, WeinheimCrossRef
21.
Zurück zum Zitat Fung B, Stryer L (1978) Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248CrossRef Fung B, Stryer L (1978) Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248CrossRef
22.
Zurück zum Zitat Estep T, Thompson T (1979) Energy transfer in lipid bilayers. Biophys J 26:195–208CrossRef Estep T, Thompson T (1979) Energy transfer in lipid bilayers. Biophys J 26:195–208CrossRef
23.
Zurück zum Zitat Wolber P, Hudson B (1979) An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210CrossRef Wolber P, Hudson B (1979) An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210CrossRef
24.
Zurück zum Zitat Dewey T, Hammes G (1980) Calculation of fluorescence resonance energy transfer on surfaces. Biophys J 32:1023–1036CrossRef Dewey T, Hammes G (1980) Calculation of fluorescence resonance energy transfer on surfaces. Biophys J 32:1023–1036CrossRef
25.
Zurück zum Zitat Snyder B, Freire E (1982) Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys J 40:137–148CrossRef Snyder B, Freire E (1982) Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys J 40:137–148CrossRef
26.
Zurück zum Zitat Doody M, Sklar L, Pownall H, Sparrow J, Gotto A, Smith L (1983) A simplified approach to resonance energy transfer in membranes, lipoproteins and spatially restricted systems. Biophys Chem 17:139–152CrossRef Doody M, Sklar L, Pownall H, Sparrow J, Gotto A, Smith L (1983) A simplified approach to resonance energy transfer in membranes, lipoproteins and spatially restricted systems. Biophys Chem 17:139–152CrossRef
27.
Zurück zum Zitat Gutierrez-Merino G, Munkonge F, Mata A, East J, Levinson B, Napier R, Lee A (1987) The position of ATP binding site on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta 897:207–216CrossRef Gutierrez-Merino G, Munkonge F, Mata A, East J, Levinson B, Napier R, Lee A (1987) The position of ATP binding site on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta 897:207–216CrossRef
28.
Zurück zum Zitat Dale R, Eisinger J, Blumberg W (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–194CrossRef Dale R, Eisinger J, Blumberg W (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–194CrossRef
29.
Zurück zum Zitat Gorbenko GP (1999) Structure of cytochrome c complexes with phospholipids as revealed by resonance energy transfer. Biochim Biophys Acta 1420:1–13CrossRef Gorbenko GP (1999) Structure of cytochrome c complexes with phospholipids as revealed by resonance energy transfer. Biochim Biophys Acta 1420:1–13CrossRef
30.
Zurück zum Zitat Dickerson RE, Takano T, Eisenberg D, Kallai OB, Samson L, Cooper A, Margoliash E (1971) Ferricytochrome c. General features of the horse and bonito proteins at 2.8 Å resolution. J Biol Chem 246:1511–1535 Dickerson RE, Takano T, Eisenberg D, Kallai OB, Samson L, Cooper A, Margoliash E (1971) Ferricytochrome c. General features of the horse and bonito proteins at 2.8 Å resolution. J Biol Chem 246:1511–1535
31.
Zurück zum Zitat Nazarov PV, Koehorst RB, Vos WL, Apanasovich VV, Hemminga MA (2006) FRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association. Biophys J 91:454–466CrossRef Nazarov PV, Koehorst RB, Vos WL, Apanasovich VV, Hemminga MA (2006) FRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association. Biophys J 91:454–466CrossRef
32.
Zurück zum Zitat Lehto MT, Sharom FJ (2002) Proximity of the protein moiety of a GPI-anchored protein to the membrane surface: a FRET study. Biochemistry 41:8368–8376CrossRef Lehto MT, Sharom FJ (2002) Proximity of the protein moiety of a GPI-anchored protein to the membrane surface: a FRET study. Biochemistry 41:8368–8376CrossRef
33.
Zurück zum Zitat Antollini SS, Soto MA, de Romanelli IB, Gutierrez-Merino C, Sotomayor P (1996) Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys J 70:1275–1284CrossRef Antollini SS, Soto MA, de Romanelli IB, Gutierrez-Merino C, Sotomayor P (1996) Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys J 70:1275–1284CrossRef
34.
Zurück zum Zitat Barrera FN, Poveda JA, Gonzalez-Ros JM, Neira JL (2003) Binding of the C-terminal sterile α motif (SAM) domain of human p73 to lipid membranes. J Biol Chem 278:46878–46885CrossRef Barrera FN, Poveda JA, Gonzalez-Ros JM, Neira JL (2003) Binding of the C-terminal sterile α motif (SAM) domain of human p73 to lipid membranes. J Biol Chem 278:46878–46885CrossRef
35.
Zurück zum Zitat Ramachandran R, Tweten RK, Johnson AE (2005) The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci U S A 102:7139–7144CrossRef Ramachandran R, Tweten RK, Johnson AE (2005) The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci U S A 102:7139–7144CrossRef
36.
Zurück zum Zitat Kleinfeld AM, Lukacovic MF (1985) Energy transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes. Biochemistry 24:1883–1890CrossRef Kleinfeld AM, Lukacovic MF (1985) Energy transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes. Biochemistry 24:1883–1890CrossRef
37.
Zurück zum Zitat Ward RJ, Palmer M, Leonard K, Bhakdi S (1994) Identification of a putative membrane-inserted segment in the α -toxin of Staphylococcus aureus. Biochemistry 33:7411–7484 Ward RJ, Palmer M, Leonard K, Bhakdi S (1994) Identification of a putative membrane-inserted segment in the α -toxin of Staphylococcus aureus. Biochemistry 33:7411–7484
38.
Zurück zum Zitat Liu R, Sharom FJ (1998) Proximity of the nucleotide binding domains of the P-glycoprotein multidrug transporter to the membrane surface: a resonance energy transfer study. Biochemistry 37:6503–6512CrossRef Liu R, Sharom FJ (1998) Proximity of the nucleotide binding domains of the P-glycoprotein multidrug transporter to the membrane surface: a resonance energy transfer study. Biochemistry 37:6503–6512CrossRef
39.
Zurück zum Zitat Shaklai N, Yguerabide J, Ranney HM (1977) Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 16:5585–5592CrossRef Shaklai N, Yguerabide J, Ranney HM (1977) Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 16:5585–5592CrossRef
40.
Zurück zum Zitat Munkonge F, East JM, Lee AG (1989) Positions of the sites labeled by N-cyclohexyl-N′-(4-dimethylamino-1-naphthyl)carbodiimide on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta 979:113–120CrossRef Munkonge F, East JM, Lee AG (1989) Positions of the sites labeled by N-cyclohexyl-N′-(4-dimethylamino-1-naphthyl)carbodiimide on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta 979:113–120CrossRef
41.
Zurück zum Zitat Johnson DA, Nuss JM (1994) The histrionicotoxin-sensitive ethidium binding site is located outside of the transmembrane domain of the nicotinic acetylcholine receptor: a fluorescence study. Biochemistry 33:9070–9077CrossRef Johnson DA, Nuss JM (1994) The histrionicotoxin-sensitive ethidium binding site is located outside of the transmembrane domain of the nicotinic acetylcholine receptor: a fluorescence study. Biochemistry 33:9070–9077CrossRef
42.
Zurück zum Zitat Remmers AE, Neubig RR (1993) Resonance energy transfer between guanine nucleotide binding protein subunits and membrane lipids. Biochemistry 32:2409–2414CrossRef Remmers AE, Neubig RR (1993) Resonance energy transfer between guanine nucleotide binding protein subunits and membrane lipids. Biochemistry 32:2409–2414CrossRef
43.
Zurück zum Zitat Carraway KL, Koland JG, Cerione RA (1990) Location of the epidermal growth factor binding site on the EGF receptor. A resonance energy transfer study. Biochemistry 29:8741–8747CrossRef Carraway KL, Koland JG, Cerione RA (1990) Location of the epidermal growth factor binding site on the EGF receptor. A resonance energy transfer study. Biochemistry 29:8741–8747CrossRef
44.
Zurück zum Zitat Gorbenko GP, Ioffe VM, Molotkovsky JG, Kinnunen PKJ (2008) Resonance energy transfer study of lysozyme-lipid interactions. Biochim Biophys Acta 1778:1213–1221CrossRef Gorbenko GP, Ioffe VM, Molotkovsky JG, Kinnunen PKJ (2008) Resonance energy transfer study of lysozyme-lipid interactions. Biochim Biophys Acta 1778:1213–1221CrossRef
45.
Zurück zum Zitat Gorbenko GP, Molotkovsky JG, Kinnunen PKJ (2006) Cytochrome c interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation. Biophys J 90:4093–4103CrossRef Gorbenko GP, Molotkovsky JG, Kinnunen PKJ (2006) Cytochrome c interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation. Biophys J 90:4093–4103CrossRef
46.
Zurück zum Zitat Davenport L, Dale R, Bisby R, Cundall R (1985) Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24:4097–4108CrossRef Davenport L, Dale R, Bisby R, Cundall R (1985) Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24:4097–4108CrossRef
47.
Zurück zum Zitat Dorn IT, Neumaier KR, Tampe R (1998) Molecular recognition of histidine-tagged molecules by metal-chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. J Am Chem Soc 120:2753–2763CrossRef Dorn IT, Neumaier KR, Tampe R (1998) Molecular recognition of histidine-tagged molecules by metal-chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. J Am Chem Soc 120:2753–2763CrossRef
48.
Zurück zum Zitat Wang T, Pentyala S, Rebecchi MJ, Scarlata S (1999) Differential association of the pleckstrin homology domains of phospholipases C-β1, C-β2, and C-δ1 with lipid bilayers and the βγ subunits of heterotrimeric G proteins. Biochemistry 38:1517–1524CrossRef Wang T, Pentyala S, Rebecchi MJ, Scarlata S (1999) Differential association of the pleckstrin homology domains of phospholipases C-β1, C-β2, and C-δ1 with lipid bilayers and the βγ subunits of heterotrimeric G proteins. Biochemistry 38:1517–1524CrossRef
49.
Zurück zum Zitat Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Downes CP, Safrany ST, Alessi DR, van Aalten DMF (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:3918–3928CrossRef Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Downes CP, Safrany ST, Alessi DR, van Aalten DMF (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:3918–3928CrossRef
50.
Zurück zum Zitat Domanov YA, Gorbenko GP, Molotkovsky JG (2004) Global analysis of steady-state energy transfer measurements in membranes: resolution of structural and binding parameters. J Fluoresc 14:49–55CrossRef Domanov YA, Gorbenko GP, Molotkovsky JG (2004) Global analysis of steady-state energy transfer measurements in membranes: resolution of structural and binding parameters. J Fluoresc 14:49–55CrossRef
51.
Zurück zum Zitat Fernandes F, Loura LMS, Koehorst R, Spruijt RB, Hemminga M, Fedorov A, Prieto M (2004) Quantification of protein-lipid selectivity using FRET: application to the M13 major coat protein. Biophys J 87:344–352CrossRef Fernandes F, Loura LMS, Koehorst R, Spruijt RB, Hemminga M, Fedorov A, Prieto M (2004) Quantification of protein-lipid selectivity using FRET: application to the M13 major coat protein. Biophys J 87:344–352CrossRef
52.
Zurück zum Zitat Capeta RC, Poveda JA, Loura LMS (2006) Non-uniform membrane probe distribution in resonance energy transfer: application to protein-lipid selectivity. J Fluoresc 16:161–172CrossRef Capeta RC, Poveda JA, Loura LMS (2006) Non-uniform membrane probe distribution in resonance energy transfer: application to protein-lipid selectivity. J Fluoresc 16:161–172CrossRef
53.
Zurück zum Zitat Picas L, Suarez-Germa C, Montero MT, Vazquez-Ibar JL, Hernandez-Borrell JH, Prieto M, Loura LMS (2010) Lactose permease lipid selectivity using Förster resonance energy transfer. Biochim Biophys Acta 1798:1707–1713CrossRef Picas L, Suarez-Germa C, Montero MT, Vazquez-Ibar JL, Hernandez-Borrell JH, Prieto M, Loura LMS (2010) Lactose permease lipid selectivity using Förster resonance energy transfer. Biochim Biophys Acta 1798:1707–1713CrossRef
54.
Zurück zum Zitat Loura LMS, Prieto M, Fernandes F (2010) Quantification of protein-lipid selectivity using FRET. Eur Biophys J 39:565–578CrossRef Loura LMS, Prieto M, Fernandes F (2010) Quantification of protein-lipid selectivity using FRET. Eur Biophys J 39:565–578CrossRef
55.
Zurück zum Zitat Hillger F, Nettels D, Dorsch S, Schuler B (2007) Detection and analysis of protein aggregation with confocal single molecule fluorescence spectroscopy. J Fluoresc 17:759–765CrossRef Hillger F, Nettels D, Dorsch S, Schuler B (2007) Detection and analysis of protein aggregation with confocal single molecule fluorescence spectroscopy. J Fluoresc 17:759–765CrossRef
56.
Zurück zum Zitat Li E, You M, Hristova K (2005) Sodium dodecyl sulfate – polyacrylamide gel electrophoresis and Förster resonance energy transfer suggest weak interactions between fibroblast growth factor receptor 3 (FGFR3) transmembrane domains in the absence of extracellular domains and ligands. Biochemistry 44:352–360CrossRef Li E, You M, Hristova K (2005) Sodium dodecyl sulfate – polyacrylamide gel electrophoresis and Förster resonance energy transfer suggest weak interactions between fibroblast growth factor receptor 3 (FGFR3) transmembrane domains in the absence of extracellular domains and ligands. Biochemistry 44:352–360CrossRef
57.
Zurück zum Zitat Floyd DH, Geva A, Bruinsma SP, Overton MC, Blumer KJ, Baranski TJ (2003) C5a receptor oligomerization. II. Fluorescence resonance energy studies of a human G protein-coupled receptor expressed in yeast. J Biol Chem 278:35354–35361CrossRef Floyd DH, Geva A, Bruinsma SP, Overton MC, Blumer KJ, Baranski TJ (2003) C5a receptor oligomerization. II. Fluorescence resonance energy studies of a human G protein-coupled receptor expressed in yeast. J Biol Chem 278:35354–35361CrossRef
58.
Zurück zum Zitat Agirre A, Barco A, Carrasco L, Nieva JL (2002) Viroporin-mediated membrane permeabilization: pore formation by nonstructural poliovirus 2B protein. J Biol Chem 277:40434–40441CrossRef Agirre A, Barco A, Carrasco L, Nieva JL (2002) Viroporin-mediated membrane permeabilization: pore formation by nonstructural poliovirus 2B protein. J Biol Chem 277:40434–40441CrossRef
59.
Zurück zum Zitat Moens PDJ, Yee DJ, Remedios CG (1994) Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: effect of phalloidin on polymer assembly. Biochemistry 33:13102–13108CrossRef Moens PDJ, Yee DJ, Remedios CG (1994) Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: effect of phalloidin on polymer assembly. Biochemistry 33:13102–13108CrossRef
60.
Zurück zum Zitat Vanderkooi JM, Ierokomas A, Nakamura H, Martonosi A (1977) Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry 16:1262–1267CrossRef Vanderkooi JM, Ierokomas A, Nakamura H, Martonosi A (1977) Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry 16:1262–1267CrossRef
61.
Zurück zum Zitat John E, Jahnig F (1991) Aggregation state of melittin in lipid vesicle membranes. Biophys J 60:319–328CrossRef John E, Jahnig F (1991) Aggregation state of melittin in lipid vesicle membranes. Biophys J 60:319–328CrossRef
62.
Zurück zum Zitat Adair BD, Engelman DM (1994) Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 33:5539–5544CrossRef Adair BD, Engelman DM (1994) Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 33:5539–5544CrossRef
63.
Zurück zum Zitat Milligan DL, Koshland DE (1988) Site-directed cross-linking: establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis. J Biol Chem 263:6268–6275 Milligan DL, Koshland DE (1988) Site-directed cross-linking: establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis. J Biol Chem 263:6268–6275
64.
Zurück zum Zitat Li M, Reddy LG, Bennett R, Silva ND, Jones LR, Thomas DD (1999) A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys J 76:2587–2599CrossRef Li M, Reddy LG, Bennett R, Silva ND, Jones LR, Thomas DD (1999) A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys J 76:2587–2599CrossRef
65.
Zurück zum Zitat Sparr E, Ash WL, Nazarov PV, Rijkers DT, Hemminga MA, Tieleman DP, Killian JA (2005) Self-association of transmembrane-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J Biol Chem 280:39324–39331CrossRef Sparr E, Ash WL, Nazarov PV, Rijkers DT, Hemminga MA, Tieleman DP, Killian JA (2005) Self-association of transmembrane-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J Biol Chem 280:39324–39331CrossRef
66.
Zurück zum Zitat Fernandes F, Loura LMS, Chichon FJ, Carrascosa JL, Fedorov A, Prieto M (2008) Role of helix 0 of the N-BAR domain in membrane curvature generation. Biophys J 94:3065–3073CrossRef Fernandes F, Loura LMS, Chichon FJ, Carrascosa JL, Fedorov A, Prieto M (2008) Role of helix 0 of the N-BAR domain in membrane curvature generation. Biophys J 94:3065–3073CrossRef
67.
Zurück zum Zitat Fung JJ, Deup X, Pardo L, Yao XJ, Velez-Ruiz GL, DeVree BT, Sunahara RK, Kobilka BK (2009) Ligand-regulated oligomerization of β2-adrenoceptors in a model lipid bilayer. EMBO J 28:3315–3328CrossRef Fung JJ, Deup X, Pardo L, Yao XJ, Velez-Ruiz GL, DeVree BT, Sunahara RK, Kobilka BK (2009) Ligand-regulated oligomerization of β2-adrenoceptors in a model lipid bilayer. EMBO J 28:3315–3328CrossRef
68.
Zurück zum Zitat Rajan SR, Illing ME, Bence NF, Kopito RR (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci U S A 98:13060–13065CrossRef Rajan SR, Illing ME, Bence NF, Kopito RR (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci U S A 98:13060–13065CrossRef
69.
Zurück zum Zitat Mihai C, Chotani M, Elton TS, Agarwal G (2009) Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy. J Mol Biol 385:432–445CrossRef Mihai C, Chotani M, Elton TS, Agarwal G (2009) Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy. J Mol Biol 385:432–445CrossRef
70.
Zurück zum Zitat Woehler A, Wlodarczyk J, Ponimaskin EG (2009) Specific oligomerization of the 5-HT1A receptor in the plasma membrane. Glycoconj J 26:749–756CrossRef Woehler A, Wlodarczyk J, Ponimaskin EG (2009) Specific oligomerization of the 5-HT1A receptor in the plasma membrane. Glycoconj J 26:749–756CrossRef
71.
Zurück zum Zitat Liu BF, Song S, Hanson M, Liang JJN (2008) Protein-protein interactions involving congenital cataract T5P gC-crystallin mutant: a confocal fluorescence microscopy study. Exp Eye Res 87:515–520CrossRef Liu BF, Song S, Hanson M, Liang JJN (2008) Protein-protein interactions involving congenital cataract T5P gC-crystallin mutant: a confocal fluorescence microscopy study. Exp Eye Res 87:515–520CrossRef
72.
Zurück zum Zitat Coutinho A, Loura LMS, Fedorov A, Prieto M (2008) Pinched multilamellar structure of aggregates of lysozyme and phosphatidylserine-containing membranes revealed by FRET. Biophys J 95:4726–4736CrossRef Coutinho A, Loura LMS, Fedorov A, Prieto M (2008) Pinched multilamellar structure of aggregates of lysozyme and phosphatidylserine-containing membranes revealed by FRET. Biophys J 95:4726–4736CrossRef
73.
Zurück zum Zitat Coutinho A, Loura LMS, Prieto M (2011) FRET studies of lipid-protein aggregates related to amyloid-like fibers. J Neurochem 116:696–701CrossRef Coutinho A, Loura LMS, Prieto M (2011) FRET studies of lipid-protein aggregates related to amyloid-like fibers. J Neurochem 116:696–701CrossRef
74.
Zurück zum Zitat Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11:1645–1655 Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11:1645–1655
75.
Zurück zum Zitat Loura LMS, de Almeida RFM, Prieto M (2001) Detection and characterization of membrane microheterogeneity by resonance energy transfer. J Fluoresc 11:197–209CrossRef Loura LMS, de Almeida RFM, Prieto M (2001) Detection and characterization of membrane microheterogeneity by resonance energy transfer. J Fluoresc 11:197–209CrossRef
76.
Zurück zum Zitat Sperotto MM, Mouritsen OG (1993) Lipid enrichment and selectivity of integral membrane proteins in two-component lipid bilayers. Eur Biophys J 22:323–328CrossRef Sperotto MM, Mouritsen OG (1993) Lipid enrichment and selectivity of integral membrane proteins in two-component lipid bilayers. Eur Biophys J 22:323–328CrossRef
77.
Zurück zum Zitat Mbamala EC, Ben-Shaul A, May S (2005) Domain formation induced by the adsorption of charged proteins on mixed lipid membranes. Biophys J 88:1702–1714CrossRef Mbamala EC, Ben-Shaul A, May S (2005) Domain formation induced by the adsorption of charged proteins on mixed lipid membranes. Biophys J 88:1702–1714CrossRef
78.
Zurück zum Zitat Loura LMS, de Almeida RFM, Silva LC, Prieto M (2009) FRET analysis of domain formation and properties in complex membrane systems. Biochim Biophys Acta 1788:209–224CrossRef Loura LMS, de Almeida RFM, Silva LC, Prieto M (2009) FRET analysis of domain formation and properties in complex membrane systems. Biochim Biophys Acta 1788:209–224CrossRef
79.
Zurück zum Zitat Gorbenko GP, Trusova VM, Molotkovsky JG, Kinnunen PKJ (2009) Cytochrome c induces lipid demixing in weakly charged phosphatidylcholine/phosphatidyl-glycerol model membranes as evidenced by resonance energy transfer. Biochim Biophys Acta 1788:1358–1365CrossRef Gorbenko GP, Trusova VM, Molotkovsky JG, Kinnunen PKJ (2009) Cytochrome c induces lipid demixing in weakly charged phosphatidylcholine/phosphatidyl-glycerol model membranes as evidenced by resonance energy transfer. Biochim Biophys Acta 1788:1358–1365CrossRef
80.
Zurück zum Zitat Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010CrossRef Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010CrossRef
81.
Zurück zum Zitat Corry B, Jayatilaka D, Rigby P (2005) A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries. Biophys J 89:3822–3836CrossRef Corry B, Jayatilaka D, Rigby P (2005) A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries. Biophys J 89:3822–3836CrossRef
Metadaten
Titel
FRET Analysis of Protein-Lipid Interactions
verfasst von
Galyna Gorbenko
Paavo K. J. Kinnunen
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/4243_2012_45

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.