Skip to main content
Erschienen in: Topics in Catalysis 11/2013

01.08.2013 | Original Paper

From Mechanistic and Kinetic Understanding of Heterogeneously Catalyzed Reactions to Tuning Catalysts Performance

Erschienen in: Topics in Catalysis | Ausgabe 11/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A number of strategies for tuning performance of heterogeneously catalyzed reactions are being explored. They comprise: (1) optimizing reactor operation based on the knowledge of reaction mechanism and kinetics, (2) application of well-defined nano-sized metal nanoparticles for preparation of supported catalysts, and (3) combining complementary reactions into one process via a proper reactor design. The present mini review demonstrates their potential for conversion of C3–C4 alkanes to the corresponding alkenes, oxidative functionalization of methane, Fischer–Tropsch reaction and HCl oxidation to Cl2 (Deacon process).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thomas JM (1999) Design, synthesis, and in situ characterisation of new solid catalysts. Angew Chem Int Ed 38:3588–3628CrossRef Thomas JM (1999) Design, synthesis, and in situ characterisation of new solid catalysts. Angew Chem Int Ed 38:3588–3628CrossRef
2.
Zurück zum Zitat Thomas JM, Catlow CRA, Sankar G (2002) Determining the structure of active sites, transition statets and intermediates in heterogeneously catalyzed reactions. Chem Commun, 2921–2929 Thomas JM, Catlow CRA, Sankar G (2002) Determining the structure of active sites, transition statets and intermediates in heterogeneously catalyzed reactions. Chem Commun, 2921–2929
3.
Zurück zum Zitat Haw JF (ed) (2002) In-situ spectroscopy in heterogeneous catalysis. Wiley-VCH, Weinheim Haw JF (ed) (2002) In-situ spectroscopy in heterogeneous catalysis. Wiley-VCH, Weinheim
4.
Zurück zum Zitat Weckhuysen BM (2003) Operando spectroscopy: fundamental and technical aspects of catalysts under working conditions. PCCP 5:4351–4360CrossRef Weckhuysen BM (2003) Operando spectroscopy: fundamental and technical aspects of catalysts under working conditions. PCCP 5:4351–4360CrossRef
5.
Zurück zum Zitat Weckhuysen BM (ed) (2004) In-situ spectroscopy of catalysts. American Scientific Publishers, USA Weckhuysen BM (ed) (2004) In-situ spectroscopy of catalysts. American Scientific Publishers, USA
6.
Zurück zum Zitat Banares MA (2005) Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal Today 100:71–77CrossRef Banares MA (2005) Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal Today 100:71–77CrossRef
7.
Zurück zum Zitat Gates BC, Knözinger H (eds) (2007) Advances in catalysis, vol 51. Elsevier, Amsterdam Gates BC, Knözinger H (eds) (2007) Advances in catalysis, vol 51. Elsevier, Amsterdam
8.
Zurück zum Zitat Weckhuysen BM (2009) Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chem Int Ed 48:4910–4943CrossRef Weckhuysen BM (2009) Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chem Int Ed 48:4910–4943CrossRef
9.
Zurück zum Zitat Sankar G, Thomas JM, Catlow CRA (2000) Combining X-ray absorption with X-ray diffraction for the structural elucidation of catalysts. Topics Catal 10:255–264CrossRef Sankar G, Thomas JM, Catlow CRA (2000) Combining X-ray absorption with X-ray diffraction for the structural elucidation of catalysts. Topics Catal 10:255–264CrossRef
10.
Zurück zum Zitat Brückner A, Kondratenko EV (2006) Simultaneous operando EPR/UV–Vis/laser-Raman spectroscopy—a powerful tool for monitoring transition metal oxide catalysts during reaction. Catal Today 113:16–24CrossRef Brückner A, Kondratenko EV (2006) Simultaneous operando EPR/UV–Vis/laser-Raman spectroscopy—a powerful tool for monitoring transition metal oxide catalysts during reaction. Catal Today 113:16–24CrossRef
11.
Zurück zum Zitat Bentrup U (2010) Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem Soc Rev 39:4718–4730CrossRef Bentrup U (2010) Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem Soc Rev 39:4718–4730CrossRef
12.
Zurück zum Zitat Gleaves JT, Yablonskii GS, Phanawadee P, Schuurman Y (1997) TAP-2: an interrogative kinetics approach. Appl Catal A 160(1):55–88CrossRef Gleaves JT, Yablonskii GS, Phanawadee P, Schuurman Y (1997) TAP-2: an interrogative kinetics approach. Appl Catal A 160(1):55–88CrossRef
13.
Zurück zum Zitat Pérez-Ramírez J, Kondratenko EV (2007) Evolution, achievements, and perspectives of the TAP technique. Catal Today 121:160–169CrossRef Pérez-Ramírez J, Kondratenko EV (2007) Evolution, achievements, and perspectives of the TAP technique. Catal Today 121:160–169CrossRef
14.
Zurück zum Zitat Gleaves JT, Yablonsky G, Zheng X, Fushimi R, Mills PL (2010) Temporal analysis of products (TAP)-Recent advances in technology for kinetic analysis of multi-component catalysts. J Mol Catal A 315:108–134CrossRef Gleaves JT, Yablonsky G, Zheng X, Fushimi R, Mills PL (2010) Temporal analysis of products (TAP)-Recent advances in technology for kinetic analysis of multi-component catalysts. J Mol Catal A 315:108–134CrossRef
15.
Zurück zum Zitat Shannon SL, Goodwin JJG (1995) Characterization of catalytic surfaces by isotopic-transient kinetics during steady-state reaction. Chem Rev 95:677–695CrossRef Shannon SL, Goodwin JJG (1995) Characterization of catalytic surfaces by isotopic-transient kinetics during steady-state reaction. Chem Rev 95:677–695CrossRef
16.
Zurück zum Zitat Efstathiou AM, Verykios XE (1997) Transient methods in heterogeneous catalysis: experimental features and application to study mechanistic aspects of the CH4/O2 (OCM), NH3/O2 and NO/He reactions. Appl Catal A 151(1):109–166CrossRef Efstathiou AM, Verykios XE (1997) Transient methods in heterogeneous catalysis: experimental features and application to study mechanistic aspects of the CH4/O2 (OCM), NH3/O2 and NO/He reactions. Appl Catal A 151(1):109–166CrossRef
17.
Zurück zum Zitat Burch R (2003) The investigation of mechanisms in environmental catalysis using time-resolved methods. Topics Catal 24(1–4):97–102CrossRef Burch R (2003) The investigation of mechanisms in environmental catalysis using time-resolved methods. Topics Catal 24(1–4):97–102CrossRef
18.
Zurück zum Zitat Kondratenko EV (2010) Using time-resolved methods to monitor and understand catalytic oxidation reactions. Catal Today 157:16–23CrossRef Kondratenko EV (2010) Using time-resolved methods to monitor and understand catalytic oxidation reactions. Catal Today 157:16–23CrossRef
19.
Zurück zum Zitat Daniel E, Resasco E, Haller GL (1994) Catalytic dehydrogenation of lower alkanes. Catalysis, vol 11. Royal Society of Chemistry, Cambridge Daniel E, Resasco E, Haller GL (1994) Catalytic dehydrogenation of lower alkanes. Catalysis, vol 11. Royal Society of Chemistry, Cambridge
20.
Zurück zum Zitat Iglesias-Juez A, Beale AM, Maaijen K, Weng TC, Glatzel P, Weckhuysen BM (2010) A combined in situ time-resolved UV–Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtASn propane dehydrogenation catalysts under industrial reaction conditions. J Catal 276:268–279CrossRef Iglesias-Juez A, Beale AM, Maaijen K, Weng TC, Glatzel P, Weckhuysen BM (2010) A combined in situ time-resolved UV–Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtASn propane dehydrogenation catalysts under industrial reaction conditions. J Catal 276:268–279CrossRef
21.
Zurück zum Zitat Mamedov EA, Cortés Corberán V (1995) Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks. Appl Catal A 127:1–40CrossRef Mamedov EA, Cortés Corberán V (1995) Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks. Appl Catal A 127:1–40CrossRef
22.
Zurück zum Zitat Bañares MA (1999) Supported metal oxide and other catalysts for ethane conversion: a review. Catal Today 51:319–348CrossRef Bañares MA (1999) Supported metal oxide and other catalysts for ethane conversion: a review. Catal Today 51:319–348CrossRef
23.
Zurück zum Zitat Bhasin MM, McCain JH, Vora BV, Imai T, Pujadó PR (2001) Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl Catal A 221:397–419CrossRef Bhasin MM, McCain JH, Vora BV, Imai T, Pujadó PR (2001) Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl Catal A 221:397–419CrossRef
24.
Zurück zum Zitat Baerns M, Grubert G, Kondratenko EV, Linke D, Rodemerck U (2003) Alkanes as substitutes for alkenes in the manufacture of petrochemicals—a continuing challenge in the present and the future. Oil Gas Eur Mag 1:36–43 Baerns M, Grubert G, Kondratenko EV, Linke D, Rodemerck U (2003) Alkanes as substitutes for alkenes in the manufacture of petrochemicals—a continuing challenge in the present and the future. Oil Gas Eur Mag 1:36–43
25.
Zurück zum Zitat Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127(1–4):113–131CrossRef Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127(1–4):113–131CrossRef
26.
Zurück zum Zitat Chen K, Khodakov A, Yang J, Bell AT, Iglesia E (1999) Isotopic tracer and kinetic studies of oxidative dehydrogenation pathways on vanadium oxide catalysts. J Catal 186:325–333CrossRef Chen K, Khodakov A, Yang J, Bell AT, Iglesia E (1999) Isotopic tracer and kinetic studies of oxidative dehydrogenation pathways on vanadium oxide catalysts. J Catal 186:325–333CrossRef
27.
Zurück zum Zitat Chen KD, Bell AT, Iglesia E (2000) Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides. J Phys Chem B 104:1292–1299CrossRef Chen KD, Bell AT, Iglesia E (2000) Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides. J Phys Chem B 104:1292–1299CrossRef
28.
Zurück zum Zitat Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205CrossRef Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205CrossRef
29.
Zurück zum Zitat Kondratenko EV, Buyevskaya OV, Baerns M (2001) Characterisation of vanadium-oxide-based catalysts for the oxidative dehydrogenation of propane to propene. Topics Catal 15:175–180CrossRef Kondratenko EV, Buyevskaya OV, Baerns M (2001) Characterisation of vanadium-oxide-based catalysts for the oxidative dehydrogenation of propane to propene. Topics Catal 15:175–180CrossRef
30.
Zurück zum Zitat Kondratenko EV, Baerns M (2001) Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O—the role of vanadia distribution and oxidant activation. Appl Catal A 222(1–2):133–143 Kondratenko EV, Baerns M (2001) Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O—the role of vanadia distribution and oxidant activation. Appl Catal A 222(1–2):133–143
31.
Zurück zum Zitat Rozanska X, Kondratenko EV, Sauer J (2008) Oxidative dehydrogenation of propane: differences between N2O and O2 in the reoxidation of reduced vanadia sites and consequences for selectivity. J Catal 256:84–94CrossRef Rozanska X, Kondratenko EV, Sauer J (2008) Oxidative dehydrogenation of propane: differences between N2O and O2 in the reoxidation of reduced vanadia sites and consequences for selectivity. J Catal 256:84–94CrossRef
32.
Zurück zum Zitat Kondratenko EV, Brückner A (2010) On the nature and reactivity of active oxygen species formed from O2 and N2O on VOx/MCM-41 used for oxidative dehydrogenation of propane. J Catal 274:111–116CrossRef Kondratenko EV, Brückner A (2010) On the nature and reactivity of active oxygen species formed from O2 and N2O on VOx/MCM-41 used for oxidative dehydrogenation of propane. J Catal 274:111–116CrossRef
33.
Zurück zum Zitat Ovsitser O, Cherian M, Brückner A, Kondratenko EV (2009) Dynamics of redox behavior of nano-sized VOx species over Ti-Si-MCM-41 from time-resolved in situ UV/vis analysis. J Catal 265:8–18CrossRef Ovsitser O, Cherian M, Brückner A, Kondratenko EV (2009) Dynamics of redox behavior of nano-sized VOx species over Ti-Si-MCM-41 from time-resolved in situ UV/vis analysis. J Catal 265:8–18CrossRef
34.
Zurück zum Zitat Ovsitser O, Schomäcker R, Kondratenko EV, Wolfram T, Trunschke A (2012) Highly selective and stable propane dehydrogenation to propene over dispersed VOx-species under oxygen-free and oxygen-lean conditions. Catal Today 192:16–19CrossRef Ovsitser O, Schomäcker R, Kondratenko EV, Wolfram T, Trunschke A (2012) Highly selective and stable propane dehydrogenation to propene over dispersed VOx-species under oxygen-free and oxygen-lean conditions. Catal Today 192:16–19CrossRef
35.
Zurück zum Zitat Ovsitser O, Kondratenko EV (2010) Selective and stable iso-butene production over highly dispersed VOx species on SiO2 supports via combining oxidative and non-oxidative iso-butane dehydrogenation. Chem Commun 46:4974–4976CrossRef Ovsitser O, Kondratenko EV (2010) Selective and stable iso-butene production over highly dispersed VOx species on SiO2 supports via combining oxidative and non-oxidative iso-butane dehydrogenation. Chem Commun 46:4974–4976CrossRef
36.
Zurück zum Zitat Sokolov S, Stoyanova M, Rodemerck U, Linke D, Kondratenko EV (2012) Dehydrogenation of propane over VOx and CrOx: time on-stream performance and coke formation/combustion. J Catal 293:67–75CrossRef Sokolov S, Stoyanova M, Rodemerck U, Linke D, Kondratenko EV (2012) Dehydrogenation of propane over VOx and CrOx: time on-stream performance and coke formation/combustion. J Catal 293:67–75CrossRef
37.
Zurück zum Zitat Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95:511–522CrossRef Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95:511–522CrossRef
38.
Zurück zum Zitat Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47:9212–9228CrossRef Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47:9212–9228CrossRef
39.
Zurück zum Zitat Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2:18–45CrossRef Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2:18–45CrossRef
40.
Zurück zum Zitat Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506CrossRef Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506CrossRef
41.
Zurück zum Zitat Cong H, Porco JA (2012) Chemical synthesis of complex molecules using nanoparticle catalysis. ACS Catalysis 2:65–70CrossRef Cong H, Porco JA (2012) Chemical synthesis of complex molecules using nanoparticle catalysis. ACS Catalysis 2:65–70CrossRef
42.
Zurück zum Zitat An K, Somorjai GA (2012) Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4:1512–1524CrossRef An K, Somorjai GA (2012) Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4:1512–1524CrossRef
43.
Zurück zum Zitat Prieto PJS, Ferreira AP, Haddad PS, Zanchet D, Bueno JMC (2010) Designing Pt nanoparticles supported on CeO2–Al2O3: synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane. J Catal 276:351–359CrossRef Prieto PJS, Ferreira AP, Haddad PS, Zanchet D, Bueno JMC (2010) Designing Pt nanoparticles supported on CeO2–Al2O3: synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane. J Catal 276:351–359CrossRef
44.
Zurück zum Zitat Berger-Karin C, Sebek M, Pohl M, Bentrup U, Kondratenko VA, Steinfeldt N, Kondratenko EV (2012) Tailored noble metal nanoparticles over γ-Al2O3 for high-temperature CH4 conversion to syngas. ChemCatChem 9:1368–1375CrossRef Berger-Karin C, Sebek M, Pohl M, Bentrup U, Kondratenko VA, Steinfeldt N, Kondratenko EV (2012) Tailored noble metal nanoparticles over γ-Al2O3 for high-temperature CH4 conversion to syngas. ChemCatChem 9:1368–1375CrossRef
45.
Zurück zum Zitat Borodko Y, Jones L, Lee H, Frei H, Somorjai GA (2009) Spectroscopic study of tetradecyltrimethylammonium bromide Pt-C14TAB nanoparticles: structure and stability. Langmuir 25:6665–6671CrossRef Borodko Y, Jones L, Lee H, Frei H, Somorjai GA (2009) Spectroscopic study of tetradecyltrimethylammonium bromide Pt-C14TAB nanoparticles: structure and stability. Langmuir 25:6665–6671CrossRef
46.
Zurück zum Zitat Perkas N, Zhong Z, Chen L, Besson M, Gedanken A (2005) Sonochemically prepared high dispersed Ru/TiO2 mesoporous catalyst for partial oxidation of methane to syngas. Catal Lett 103:9–14CrossRef Perkas N, Zhong Z, Chen L, Besson M, Gedanken A (2005) Sonochemically prepared high dispersed Ru/TiO2 mesoporous catalyst for partial oxidation of methane to syngas. Catal Lett 103:9–14CrossRef
47.
Zurück zum Zitat Qu Y, Sutherland AM, Lien J, Suarez GD, Guo T (2009) Probing site activity of monodisperse Pt nanoparticle catalysts using steam reforming of methane. J Phys Chem Lett 1(1):254–259CrossRef Qu Y, Sutherland AM, Lien J, Suarez GD, Guo T (2009) Probing site activity of monodisperse Pt nanoparticle catalysts using steam reforming of methane. J Phys Chem Lett 1(1):254–259CrossRef
48.
Zurück zum Zitat Oosterkamp P (2003) Synthesis gas generation: industrial encyclopaedia of catalysis, vol 6. Wiley, Weinheim Oosterkamp P (2003) Synthesis gas generation: industrial encyclopaedia of catalysis, vol 6. Wiley, Weinheim
49.
Zurück zum Zitat Sehested J (2006) Four challenges for nickel steam-reforming catalysts. Catal Today 111:103–110CrossRef Sehested J (2006) Four challenges for nickel steam-reforming catalysts. Catal Today 111:103–110CrossRef
50.
Zurück zum Zitat Enger BC, Lodeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A 346:1–27CrossRef Enger BC, Lodeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A 346:1–27CrossRef
51.
Zurück zum Zitat Nakagawa K, Ikenaga N, Teng Y, Kobayashi T, Suzuki T (1999) Partial oxidation of methane to synthesis gas over iridium-nickel bimetallic catalysts. Appl Catal A 180(1–2):183–193 Nakagawa K, Ikenaga N, Teng Y, Kobayashi T, Suzuki T (1999) Partial oxidation of methane to synthesis gas over iridium-nickel bimetallic catalysts. Appl Catal A 180(1–2):183–193
52.
Zurück zum Zitat Li D, Nishida K, Zhan Y, Shishido T, Oumi Y, Sano T, Takehira K (2008) Superior catalytic behavior of trace Pt-doped Ni/Mg(Al)O in methane reforming under daily start-up and shut-down operation. Appl Catal A 350(2):225–236CrossRef Li D, Nishida K, Zhan Y, Shishido T, Oumi Y, Sano T, Takehira K (2008) Superior catalytic behavior of trace Pt-doped Ni/Mg(Al)O in methane reforming under daily start-up and shut-down operation. Appl Catal A 350(2):225–236CrossRef
53.
Zurück zum Zitat Berger-Karin C, Radnik J, Kondratenko EV (2011) Mechanistic origins of the promoting effect of tiny amounts of Rh on the performance of NiOx/Al2O3 in partial oxidation of methane. J Catal 280:116–124CrossRef Berger-Karin C, Radnik J, Kondratenko EV (2011) Mechanistic origins of the promoting effect of tiny amounts of Rh on the performance of NiOx/Al2O3 in partial oxidation of methane. J Catal 280:116–124CrossRef
54.
Zurück zum Zitat Chin Y-H, Buda C, Neurock M, Iglesia E (2011) Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4–O2 catalysis on supported Pt clusters. J Am Chem Soc 133:15958–15978CrossRef Chin Y-H, Buda C, Neurock M, Iglesia E (2011) Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4–O2 catalysis on supported Pt clusters. J Am Chem Soc 133:15958–15978CrossRef
55.
Zurück zum Zitat Chin Y-H, Iglesia E (2011) Elementary steps, the role of chemisorbed oxygen, and the effects of cluster size in catalytic CH4–O2 reactions on palladium. J Phys Chem C 115:17845–17855CrossRef Chin Y-H, Iglesia E (2011) Elementary steps, the role of chemisorbed oxygen, and the effects of cluster size in catalytic CH4–O2 reactions on palladium. J Phys Chem C 115:17845–17855CrossRef
56.
Zurück zum Zitat Steynberg AP, Dry ME (eds) (2004) Fischer–Tropsch technology vol 152. Elsevier, Amsterdam Steynberg AP, Dry ME (eds) (2004) Fischer–Tropsch technology vol 152. Elsevier, Amsterdam
57.
Zurück zum Zitat Iglesia E, Soled SL, Fiato RA (1992) Fischer–Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 137:212–224CrossRef Iglesia E, Soled SL, Fiato RA (1992) Fischer–Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 137:212–224CrossRef
58.
Zurück zum Zitat Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964CrossRef Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964CrossRef
59.
Zurück zum Zitat Borg O, Dietzel PDC, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, Eri S, Holmen A, Ryttera E (2008) Fischer–Tropsch synthesis: cobalt particle size and support effects on intrinsic activity and product distribution. J Catal 259(2):161–164CrossRef Borg O, Dietzel PDC, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, Eri S, Holmen A, Ryttera E (2008) Fischer–Tropsch synthesis: cobalt particle size and support effects on intrinsic activity and product distribution. J Catal 259(2):161–164CrossRef
60.
Zurück zum Zitat den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Froseth V, Holmen A, de Jong KP (2009) On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 131(20):7197–7203CrossRef den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Froseth V, Holmen A, de Jong KP (2009) On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 131(20):7197–7203CrossRef
61.
Zurück zum Zitat van Santen RA, Ghouri MM, Shetty S, Hensen EMH (2011) Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations. Catal Sci Tech 1(6):891–911CrossRef van Santen RA, Ghouri MM, Shetty S, Hensen EMH (2011) Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations. Catal Sci Tech 1(6):891–911CrossRef
62.
Zurück zum Zitat Pérez-Ramírez J, Mondelli C, Schmidt T, Schlüter OF-K, Wolf A, Mleczko L, Dreier T (2011) Sustainable chlorine recycling via catalysed HCl oxidation: from fundamentals to implementation. Energy Environ Sci 4:4786–4799CrossRef Pérez-Ramírez J, Mondelli C, Schmidt T, Schlüter OF-K, Wolf A, Mleczko L, Dreier T (2011) Sustainable chlorine recycling via catalysed HCl oxidation: from fundamentals to implementation. Energy Environ Sci 4:4786–4799CrossRef
63.
Zurück zum Zitat Seki K (2010) Development of RuO2/rutile-TiO2 Catalyst for industrial HCl oxidation process. Catal Surv Asia 14:168–175CrossRef Seki K (2010) Development of RuO2/rutile-TiO2 Catalyst for industrial HCl oxidation process. Catal Surv Asia 14:168–175CrossRef
64.
Zurück zum Zitat Mondelli C, Amrute AP, Krumeich F, Schmidt T, Pérez-Ramírez J (2011) Shaped RuO2/SnO2–Al2O3 catalyst for large-scale stable Cl2 production by HCl oxidation. ChemCatChem 3(4):657–660CrossRef Mondelli C, Amrute AP, Krumeich F, Schmidt T, Pérez-Ramírez J (2011) Shaped RuO2/SnO2–Al2O3 catalyst for large-scale stable Cl2 production by HCl oxidation. ChemCatChem 3(4):657–660CrossRef
65.
Zurück zum Zitat Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate CJ, Andersen JN, Seitsonen AP, Over H (2008) Stable Deacon process for HCl oxidation over RuO2. Angew Chem Int Ed 47:2131–2134CrossRef Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate CJ, Andersen JN, Seitsonen AP, Over H (2008) Stable Deacon process for HCl oxidation over RuO2. Angew Chem Int Ed 47:2131–2134CrossRef
66.
Zurück zum Zitat Lopez N, Gomez-Segura J, Marin RP, Pérez-Ramírez J (2008) Mechanism of HCl oxidation (Deacon process) over RuO2. J Catal 255(1):29–39CrossRef Lopez N, Gomez-Segura J, Marin RP, Pérez-Ramírez J (2008) Mechanism of HCl oxidation (Deacon process) over RuO2. J Catal 255(1):29–39CrossRef
67.
Zurück zum Zitat Zweidinger S, Crihan D, Knapp M, Hofmann JP, Seitsonen AP, Weststrate CJ, Lundgren E, Andersen JN, Over H (2008) Reaction mechanism of the oxidation of HCl over RuO2(110). J Phys Chem C 112:9966–9969CrossRef Zweidinger S, Crihan D, Knapp M, Hofmann JP, Seitsonen AP, Weststrate CJ, Lundgren E, Andersen JN, Over H (2008) Reaction mechanism of the oxidation of HCl over RuO2(110). J Phys Chem C 112:9966–9969CrossRef
68.
Zurück zum Zitat Hevia MAG, Amrute AP, Schmidt T, Pérez-Ramírez J (2010) Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. J Catal 276(1):141–151CrossRef Hevia MAG, Amrute AP, Schmidt T, Pérez-Ramírez J (2010) Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. J Catal 276(1):141–151CrossRef
69.
Zurück zum Zitat Amrute AP, Mondelli C, Hevia MAG, Pérez-Ramírez J (2011) Temporal analysis of products study of HCl oxidation on copper- and ruthenium-based catalysts. J Phys Chem C 115(4):1056–1063CrossRef Amrute AP, Mondelli C, Hevia MAG, Pérez-Ramírez J (2011) Temporal analysis of products study of HCl oxidation on copper- and ruthenium-based catalysts. J Phys Chem C 115(4):1056–1063CrossRef
70.
Zurück zum Zitat Teschner D, Novell-Leruth G, Farra R, Knop-Gericke A, Schlögl R, Szentmiklosi L, Hevia MG, Soerijanto H, Schomäcker R, Pérez-Ramírez J, Lopez N (2012) In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nat Chem 4(9):739–745CrossRef Teschner D, Novell-Leruth G, Farra R, Knop-Gericke A, Schlögl R, Szentmiklosi L, Hevia MG, Soerijanto H, Schomäcker R, Pérez-Ramírez J, Lopez N (2012) In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nat Chem 4(9):739–745CrossRef
71.
Zurück zum Zitat Hess K, Rohrlack H, Farkas OH (2012) One-dimensional confinement in heterogeneous catalysis: trapped oxygen on RuO2(110) model catalysts. Surf Sci 606:L69–L73CrossRef Hess K, Rohrlack H, Farkas OH (2012) One-dimensional confinement in heterogeneous catalysis: trapped oxygen on RuO2(110) model catalysts. Surf Sci 606:L69–L73CrossRef
72.
Zurück zum Zitat Keller GF, Bhasin MM (1982) Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J Catal 73:9–19CrossRef Keller GF, Bhasin MM (1982) Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J Catal 73:9–19CrossRef
73.
Zurück zum Zitat Hinsen W, Baerns M (1983) Oxidative coupling of methane to C2 hydrocarbons in the presence of different catalysts. Chem Zeit 107:223–226 Hinsen W, Baerns M (1983) Oxidative coupling of methane to C2 hydrocarbons in the presence of different catalysts. Chem Zeit 107:223–226
74.
Zurück zum Zitat Ito T, Wang J, Lin C-H, Lunsford JH (1985) Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J Am Chem Soc 107:5062–5068CrossRef Ito T, Wang J, Lin C-H, Lunsford JH (1985) Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J Am Chem Soc 107:5062–5068CrossRef
75.
Zurück zum Zitat Sokolovskii VD (1995) Catalyst properties and direction of selective oxidative transformations of C1–C3 paraffins. Catal Today 24:377–381CrossRef Sokolovskii VD (1995) Catalyst properties and direction of selective oxidative transformations of C1–C3 paraffins. Catal Today 24:377–381CrossRef
76.
Zurück zum Zitat Lunsford JH (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal Today 63(2–4):165–174CrossRef Lunsford JH (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal Today 63(2–4):165–174CrossRef
77.
Zurück zum Zitat Kondratenko EV, Baerns M (2008) Oxidative coupling of methane. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 6. Wiley, New York Kondratenko EV, Baerns M (2008) Oxidative coupling of methane. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 6. Wiley, New York
78.
Zurück zum Zitat Zavyalova U, Holena M, Schlögl R, Baerns M (2012) Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3:1935–1947CrossRef Zavyalova U, Holena M, Schlögl R, Baerns M (2012) Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3:1935–1947CrossRef
79.
Zurück zum Zitat Kondratenko EV, Rodemerck U (2013) A dual-reactor concept for the high-yielding conversion of methane into higher hydrocarbons. ChemCatChem 5:697–700CrossRef Kondratenko EV, Rodemerck U (2013) A dual-reactor concept for the high-yielding conversion of methane into higher hydrocarbons. ChemCatChem 5:697–700CrossRef
Metadaten
Titel
From Mechanistic and Kinetic Understanding of Heterogeneously Catalyzed Reactions to Tuning Catalysts Performance
Publikationsdatum
01.08.2013
Erschienen in
Topics in Catalysis / Ausgabe 11/2013
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-013-0049-7

Weitere Artikel der Ausgabe 11/2013

Topics in Catalysis 11/2013 Zur Ausgabe

Preface

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.