Skip to main content

2020 | OriginalPaper | Buchkapitel

Fully-Asynchronous Fully-Implicit Variable-Order Variable-Timestep Simulation of Neural Networks

verfasst von : Bruno Magalhães, Michael Hines, Thomas Sterling, Felix Schürmann

Erschienen in: Computational Science – ICCS 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

State-of-the-art simulations of detailed neurons follow the Bulk Synchronous Parallel execution model. Execution is divided in equidistant communication intervals, with parallel neurons interpolation and collective communication guiding synchronization. Such simulations, driven by stiff dynamics or wide range of time scales, struggle with fixed step interpolation methods, yielding excessive computation on intervals of quasi-constant activity and inaccurate interpolation of periods of high volatility in solution. Alternative adaptive timestepping methods are inefficient in parallel executions due to computational imbalance at the synchronization barriers. We introduce a distributed fully-asynchronous execution model that removes global synchronization, allowing for long variable timestep interpolations of neurons. Asynchronicity is provided by point-to-point communication notifying neurons’ time advancement to synaptic connectivities. Timestepping is driven by scheduled neuron advancements based on interneuron synaptic delays, yielding an exhaustive yet not speculative execution. Benchmarks on 64 Cray XE6 compute nodes demonstrate reduced number of interpolation steps, higher numerical accuracy and lower runtime compared to state-of-the-art methods. Efficiency is shown to be activity-dependent, with scaling of the algorithm demonstrated on a simulation of a laboratory experiment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Cohen, S.D., Hindmarsh, A.C.: CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10(2), 138–143 (1996)CrossRef Cohen, S.D., Hindmarsh, A.C.: CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10(2), 138–143 (1996)CrossRef
4.
Zurück zum Zitat Hines, M.L., Carnevale, N.T.: The neuron simulation environment. Neural Comput. 9(6), 1179–1209 (1997)CrossRef Hines, M.L., Carnevale, N.T.: The neuron simulation environment. Neural Comput. 9(6), 1179–1209 (1997)CrossRef
5.
Zurück zum Zitat Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)CrossRef Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)CrossRef
6.
Zurück zum Zitat Kaiser, H., Brodowicz, M., Sterling, T.: Parallex an advanced parallel execution model for scaling-impaired applications. In: International Conference on Parallel Processing Workshops, 2009 (ICPPW 2009), pp. 394–401. IEEE (2009) Kaiser, H., Brodowicz, M., Sterling, T.: Parallex an advanced parallel execution model for scaling-impaired applications. In: International Conference on Parallel Processing Workshops, 2009 (ICPPW 2009), pp. 394–401. IEEE (2009)
8.
Zurück zum Zitat Lytton, W.W., Hines, M.L.: Independent variable time-step integration of individual neurons for network simulations. Neural Comput. 17(4), 903–921 (2005)CrossRef Lytton, W.W., Hines, M.L.: Independent variable time-step integration of individual neurons for network simulations. Neural Comput. 17(4), 903–921 (2005)CrossRef
9.
Zurück zum Zitat Magalhaes, B.R.C., Sterling, T., Schürmann, F., Hines, M.: Exploiting flow graph of system of odes to accelerate the simulation of biologically-detailed neural networks. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 176–187. IEEE (2019). https://doi.org/10.1109/IPDPS.2019.00028 Magalhaes, B.R.C., Sterling, T., Schürmann, F., Hines, M.: Exploiting flow graph of system of odes to accelerate the simulation of biologically-detailed neural networks. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 176–187. IEEE (2019). https://​doi.​org/​10.​1109/​IPDPS.​2019.​00028
12.
Zurück zum Zitat Markram, H., et al.: Reconstruction and simulation of neocortical microcircuitry. Cell 163(2), 456–492 (2015)CrossRef Markram, H., et al.: Reconstruction and simulation of neocortical microcircuitry. Cell 163(2), 456–492 (2015)CrossRef
13.
Zurück zum Zitat Sterling, T., Anderson, M., Bohan, P.K., Brodowicz, M., Kulkarni, A., Zhang, B.: Towards exascale co-design in a runtime system. In: Exascale Applications and Software Conference, Stockholm, Sweden, April 2014 Sterling, T., Anderson, M., Bohan, P.K., Brodowicz, M., Kulkarni, A., Zhang, B.: Towards exascale co-design in a runtime system. In: Exascale Applications and Software Conference, Stockholm, Sweden, April 2014
Metadaten
Titel
Fully-Asynchronous Fully-Implicit Variable-Order Variable-Timestep Simulation of Neural Networks
verfasst von
Bruno Magalhães
Michael Hines
Thomas Sterling
Felix Schürmann
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-50426-7_8