Skip to main content
Erschienen in: Journal of Materials Science 8/2017

03.01.2017 | Original Paper

Functionalization of cyclic olefin copolymer substrates with polyethylene glycol diacrylate for the in situ synthesis of immobilized nanoparticles

verfasst von: Josiane Saadé, Nina Declas, Pedro Marote, Claire Bordes, Karine Faure

Erschienen in: Journal of Materials Science | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoparticles as novel stationary phase could enhance chromatographic performance (efficiency and resolution). However, their implementation in columns is rather challenging. The methodological approach we propose is an in situ synthesis of such nanoparticles through photopolymerization of a miniemulsion containing hexyl acrylate monomers. While the miniemulsion composition was previously optimized, resulting in highly spherical monodisperse nanoparticles with a mean size inferior to 200 nm, the immobilization of such particles is not straightforward. The strategy consists in carrying out the miniemulsion polymerization in the very close vicinity of a reactive surface, namely cyclic olefin copolymer (COC), from which covalent bond can grow thanks to hydrogen abstraction. While the hydrophobic nature of COC appears to disturb the stability of the miniemulsion, a more polar surface allows simultaneous polymerization and anchoring of nanoparticles on the surface. Surface functionalization of COC with different monomers was tested in this work and polyethylene glycol dimethacrylate photografting was found to provide an adequate surface modification. It appears however that the extent of surface modification and especially the amount of initiator that is applied on the COC surface have consequences on both the spherical aspect and the number of resulting nanoparticles. An optimization of the PEGDA surface modification by central composite design in regards to PEGDA and BME amounts and irradiation time is proposed. SEM images after miniemulsion photopolymerization for different conditions of PEGDA photografting showed the impact of photografting on nanoparticle shape.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Knox JH, Saleem M (1969) Kinetic conditions for optimum speed and resolution in column chromatography. J Chromatogr Sci 7(10):614–622CrossRef Knox JH, Saleem M (1969) Kinetic conditions for optimum speed and resolution in column chromatography. J Chromatogr Sci 7(10):614–622CrossRef
2.
Zurück zum Zitat Knox JH (1977) Practical aspects of LC theory. J Chromatogr Sci 15(9):352–364CrossRef Knox JH (1977) Practical aspects of LC theory. J Chromatogr Sci 15(9):352–364CrossRef
3.
Zurück zum Zitat Desmet G, Clicq D, Gzil P (2005) Geometry-independent plate height representation methods for the direct comparison of the kinetic performance of LC supports with a different size or morphology. Anal Chem 77(13):4058–4070CrossRef Desmet G, Clicq D, Gzil P (2005) Geometry-independent plate height representation methods for the direct comparison of the kinetic performance of LC supports with a different size or morphology. Anal Chem 77(13):4058–4070CrossRef
4.
Zurück zum Zitat Nguyen DTT et al (2006) Chromatographic behaviour and comparison of column packed with sub-2 μm stationary phases in liquid chromatography. J Chromatogr A 1128(1–2):105–113CrossRef Nguyen DTT et al (2006) Chromatographic behaviour and comparison of column packed with sub-2 μm stationary phases in liquid chromatography. J Chromatogr A 1128(1–2):105–113CrossRef
5.
Zurück zum Zitat Nguyen DTT et al (2006) Fast analysis in liquid chromatography using small particle size and high pressure. J Sep Sci 29(12):1836–1848CrossRef Nguyen DTT et al (2006) Fast analysis in liquid chromatography using small particle size and high pressure. J Sep Sci 29(12):1836–1848CrossRef
6.
Zurück zum Zitat Kundu P et al (2013) Stability of oil-in-water macro-emulsion with anionic surfactant: effect of electrolytes and temperature. Chem Eng Sci 102:176–185CrossRef Kundu P et al (2013) Stability of oil-in-water macro-emulsion with anionic surfactant: effect of electrolytes and temperature. Chem Eng Sci 102:176–185CrossRef
7.
Zurück zum Zitat Chemtob A et al (2010) Photoinduced miniemulsion polymerization. Colloid Polym Sci 288(5):579–587CrossRef Chemtob A et al (2010) Photoinduced miniemulsion polymerization. Colloid Polym Sci 288(5):579–587CrossRef
8.
Zurück zum Zitat Hoijemberg PA, Chemtob A, Croutxé-Barghorn C (2011) Two routes towards photoinitiator-free photopolymerization in miniemulsion: acrylate self-initiation and photoactive surfactant. Macromol Chem Phys 212(22):2417–2422CrossRef Hoijemberg PA, Chemtob A, Croutxé-Barghorn C (2011) Two routes towards photoinitiator-free photopolymerization in miniemulsion: acrylate self-initiation and photoactive surfactant. Macromol Chem Phys 212(22):2417–2422CrossRef
9.
Zurück zum Zitat Saadé J et al (2016) Response surface optimization of miniemulsion: application to UV synthesis of hexyl acrylate nanoparticles. Colloid Polym Sci 294(1):27–36CrossRef Saadé J et al (2016) Response surface optimization of miniemulsion: application to UV synthesis of hexyl acrylate nanoparticles. Colloid Polym Sci 294(1):27–36CrossRef
10.
Zurück zum Zitat Wang Y, Yang W (2004) MMA/DVB emulsion surface graft polymerization initiated by UV light. Langmuir 20(15):6225–6231CrossRef Wang Y, Yang W (2004) MMA/DVB emulsion surface graft polymerization initiated by UV light. Langmuir 20(15):6225–6231CrossRef
11.
Zurück zum Zitat Wang Y et al (2005) Directly fabricating monolayer nanoparticles on a polymer surface by UV-induced MMA/DVB microemulsion graft polymerization. Macromol Rapid Commun 26(2):87–92CrossRef Wang Y et al (2005) Directly fabricating monolayer nanoparticles on a polymer surface by UV-induced MMA/DVB microemulsion graft polymerization. Macromol Rapid Commun 26(2):87–92CrossRef
12.
Zurück zum Zitat Gustafsson O, Mogensen KB, Kutter JP (2008) Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography. Electrophoresis 29(15):3145–3152CrossRef Gustafsson O, Mogensen KB, Kutter JP (2008) Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography. Electrophoresis 29(15):3145–3152CrossRef
13.
Zurück zum Zitat Rohr T et al (2003) Surface functionalization of thermoplastic polymers for the fabrication of microfluidic devices by photoinitiated grafting. Adv Funct Mater 13(4):264–270CrossRef Rohr T et al (2003) Surface functionalization of thermoplastic polymers for the fabrication of microfluidic devices by photoinitiated grafting. Adv Funct Mater 13(4):264–270CrossRef
14.
Zurück zum Zitat Ladner Y et al (2012) New “one-step” method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels. Lab Chip 12(9):1680–1685CrossRef Ladner Y et al (2012) New “one-step” method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels. Lab Chip 12(9):1680–1685CrossRef
15.
Zurück zum Zitat Yang W, Rånby B (1996) Radical living graft polymerization on the surface of polymeric materials. Macromolecules 29(9):3308–3310CrossRef Yang W, Rånby B (1996) Radical living graft polymerization on the surface of polymeric materials. Macromolecules 29(9):3308–3310CrossRef
16.
Zurück zum Zitat Ma Y, Liu L, Yang W (2011) Photo-induced living/controlled surface radical grafting polymerization and its application in fabricating 3-D micro-architectures on the surface of flat/particulate organic substrates. Polymer 52(19):4159–4173CrossRef Ma Y, Liu L, Yang W (2011) Photo-induced living/controlled surface radical grafting polymerization and its application in fabricating 3-D micro-architectures on the surface of flat/particulate organic substrates. Polymer 52(19):4159–4173CrossRef
17.
Zurück zum Zitat Ma H, Davis RH, Bowman CN (1999) A novel sequential photoinduced living graft polymerization. Macromolecules 33(2):331–335CrossRef Ma H, Davis RH, Bowman CN (1999) A novel sequential photoinduced living graft polymerization. Macromolecules 33(2):331–335CrossRef
18.
Zurück zum Zitat Zhao C, Zhang Z, Yang W (2012) A remote photochemical reaction for surface modification of polymeric substrate. J Polym Sci, Part A: Polym Chem 50(18):3698–3702CrossRef Zhao C, Zhang Z, Yang W (2012) A remote photochemical reaction for surface modification of polymeric substrate. J Polym Sci, Part A: Polym Chem 50(18):3698–3702CrossRef
19.
Zurück zum Zitat Schneider MH, Tran Y, Tabeling P (2011) Benzophenone absorption and diffusion in poly(dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir 27(3):1232–1240CrossRef Schneider MH, Tran Y, Tabeling P (2011) Benzophenone absorption and diffusion in poly(dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir 27(3):1232–1240CrossRef
20.
Zurück zum Zitat Kumlangdudsana P, Dubas ST, Dubas AL (2007) Surface modification of microfluidic devices. J Met Mater Miner 17(2): 67–74 Kumlangdudsana P, Dubas ST, Dubas AL (2007) Surface modification of microfluidic devices. J Met Mater Miner 17(2): 67–74
21.
Zurück zum Zitat Roy S et al (2010) Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices. Sens Actuators B: Chem 150(2):537–549CrossRef Roy S et al (2010) Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices. Sens Actuators B: Chem 150(2):537–549CrossRef
22.
Zurück zum Zitat Roy S, Yue CY (2011) Surface modification of COC microfluidic devices: a comparative study of nitrogen plasma treatment and its advantages over argon and oxygen plasma treatments. Plasma Processes Polym 8(5):432–443CrossRef Roy S, Yue CY (2011) Surface modification of COC microfluidic devices: a comparative study of nitrogen plasma treatment and its advantages over argon and oxygen plasma treatments. Plasma Processes Polym 8(5):432–443CrossRef
23.
Zurück zum Zitat Tsao CW et al (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7(4):499–505CrossRef Tsao CW et al (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7(4):499–505CrossRef
24.
Zurück zum Zitat Zhang J, Das C, Fan ZH (2008) Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices. Microfluid Nanofluid 5(3):327–335CrossRef Zhang J, Das C, Fan ZH (2008) Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices. Microfluid Nanofluid 5(3):327–335CrossRef
25.
Zurück zum Zitat Brisset F et al (2015) Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: a covalent grafting method. Appl Surf Sci 329:337–346CrossRef Brisset F et al (2015) Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: a covalent grafting method. Appl Surf Sci 329:337–346CrossRef
26.
Zurück zum Zitat Li C et al (2005) Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method. Electrophoresis 26(9):1800–1806CrossRef Li C et al (2005) Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method. Electrophoresis 26(9):1800–1806CrossRef
27.
Zurück zum Zitat Stachowiak TB et al (2007) Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. J Sep Sci 30(7):1088–1093CrossRef Stachowiak TB et al (2007) Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. J Sep Sci 30(7):1088–1093CrossRef
28.
Zurück zum Zitat Hu S et al (2004) Surface-directed, graft polymerization within microfluidic channels. Anal Chem 76(7):1865–1870CrossRef Hu S et al (2004) Surface-directed, graft polymerization within microfluidic channels. Anal Chem 76(7):1865–1870CrossRef
29.
Zurück zum Zitat Burke JM, Smela E (2012) A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane). In: Biomicrofluidics. 2012: United States, pp 16506–1650610 Burke JM, Smela E (2012) A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane). In: Biomicrofluidics. 2012: United States, pp 16506–1650610
30.
Zurück zum Zitat Almutairi Z, Ren CL, Simon L (2012) Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications. Colloids Surf A 415:406–412CrossRef Almutairi Z, Ren CL, Simon L (2012) Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications. Colloids Surf A 415:406–412CrossRef
31.
Zurück zum Zitat Stachowiak TB, Svec F, Fréchet JMJ (2006) Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting. Chem Mater 18(25):5950–5957CrossRef Stachowiak TB, Svec F, Fréchet JMJ (2006) Patternable protein resistant surfaces for multifunctional microfluidic devices via surface hydrophilization of porous polymer monoliths using photografting. Chem Mater 18(25):5950–5957CrossRef
32.
Zurück zum Zitat Kholdi OE et al (2004) Modification of adhesive properties of a polyethylene film by photografting Journal of Applied Polymer Science Volume 92, Issue 5. J Appl Polym Sci 92(5):2803–2811CrossRef Kholdi OE et al (2004) Modification of adhesive properties of a polyethylene film by photografting Journal of Applied Polymer Science Volume 92, Issue 5. J Appl Polym Sci 92(5):2803–2811CrossRef
33.
Zurück zum Zitat Wang H, Brown HR (2004) Ultraviolet grafting of methacrylic acid and acrylic acid on high-density polyethylene in different solvents and the wettability of grafted high-density polyethylene. I. Grafting. J Polym Sci, Part A: Polym Chem 42(2):253–262CrossRef Wang H, Brown HR (2004) Ultraviolet grafting of methacrylic acid and acrylic acid on high-density polyethylene in different solvents and the wettability of grafted high-density polyethylene. I. Grafting. J Polym Sci, Part A: Polym Chem 42(2):253–262CrossRef
34.
Zurück zum Zitat Li G et al (2012) Surface photografting initiated by benzophenone in water and mixed solvents containing water and ethanol. J Appl Polym Sci 123(4):1951–1959CrossRef Li G et al (2012) Surface photografting initiated by benzophenone in water and mixed solvents containing water and ethanol. J Appl Polym Sci 123(4):1951–1959CrossRef
35.
Zurück zum Zitat Yang W, Rånby B (1996) Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting. J Appl Polym Sci 62(3):545–555CrossRef Yang W, Rånby B (1996) Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting. J Appl Polym Sci 62(3):545–555CrossRef
36.
Zurück zum Zitat Decker C, Zahouily K (1998) Surface modification of polyolefins by photografting of acrylic monomers. Macromol Symp 129(1):99–108CrossRef Decker C, Zahouily K (1998) Surface modification of polyolefins by photografting of acrylic monomers. Macromol Symp 129(1):99–108CrossRef
37.
Zurück zum Zitat Wang Y et al (2005) Facile surface superhydrophilic modification: nVP/MBA inverse microemulsion surface-grafting polymerization initiated by UV light. Macromol Rapid Commun 26(22):1788–1793CrossRef Wang Y et al (2005) Facile surface superhydrophilic modification: nVP/MBA inverse microemulsion surface-grafting polymerization initiated by UV light. Macromol Rapid Commun 26(22):1788–1793CrossRef
38.
Zurück zum Zitat He D, Ulbricht M (2006) Surface-selective photo-grafting on porous polymer membranes via a synergist immobilization method. J Mater Chem 16(19):1860–1868CrossRef He D, Ulbricht M (2006) Surface-selective photo-grafting on porous polymer membranes via a synergist immobilization method. J Mater Chem 16(19):1860–1868CrossRef
39.
Zurück zum Zitat Balart J et al (2012) Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. J Mater Sci 47(5):2375–2383. doi:10.1007/s10853-011-6056-9 CrossRef Balart J et al (2012) Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. J Mater Sci 47(5):2375–2383. doi:10.​1007/​s10853-011-6056-9 CrossRef
40.
Zurück zum Zitat Ma H, Davis RH, Bowman CN (2001) Principal factors affecting sequential photoinduced graft polymerization. Polymer 42(20):8333–8338CrossRef Ma H, Davis RH, Bowman CN (2001) Principal factors affecting sequential photoinduced graft polymerization. Polymer 42(20):8333–8338CrossRef
41.
Zurück zum Zitat Feng Y et al (2013) Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. J Mater Sci Mater Med 24(1):61–70CrossRef Feng Y et al (2013) Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. J Mater Sci Mater Med 24(1):61–70CrossRef
42.
Zurück zum Zitat Stachowiak TB et al (2003) Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis 24(21):3689–3693CrossRef Stachowiak TB et al (2003) Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis 24(21):3689–3693CrossRef
43.
Zurück zum Zitat Jena RK, Yue CY, Anand L (2011) Improvement of thermal bond strength and surface properties of Cyclic Olefin Copolymer (COC) based microfluidic device using the photo-grafting technique. Sens Actuators B: Chem 157(2):518–526CrossRef Jena RK, Yue CY, Anand L (2011) Improvement of thermal bond strength and surface properties of Cyclic Olefin Copolymer (COC) based microfluidic device using the photo-grafting technique. Sens Actuators B: Chem 157(2):518–526CrossRef
44.
Zurück zum Zitat Roy S et al (2011) Low-temperature (below Tg) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces. J Mater Chem 21(38):15031–15040CrossRef Roy S et al (2011) Low-temperature (below Tg) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces. J Mater Chem 21(38):15031–15040CrossRef
45.
Zurück zum Zitat Roy S et al (2013) Fabrication of smart COC chips: Advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers. Sens Actuators B: Chem 178:86–95CrossRef Roy S et al (2013) Fabrication of smart COC chips: Advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers. Sens Actuators B: Chem 178:86–95CrossRef
46.
Zurück zum Zitat Du G et al (2012) In-channel tuning of hydrophilicity and surface charge of cyclic olefin copolymer microchips by UV-induced graft polymerization and its application in lab-on-a-chip devices. Chem Eng J 195–196:132–139CrossRef Du G et al (2012) In-channel tuning of hydrophilicity and surface charge of cyclic olefin copolymer microchips by UV-induced graft polymerization and its application in lab-on-a-chip devices. Chem Eng J 195–196:132–139CrossRef
47.
Zurück zum Zitat Peng X et al (2013) Charge tunable zwitterionic polyampholyte layers formed in cyclic olefin copolymer microchannels through photochemical graft polymerization. ACS Appl Mater Interfaces 5(3):1017–1023CrossRef Peng X et al (2013) Charge tunable zwitterionic polyampholyte layers formed in cyclic olefin copolymer microchannels through photochemical graft polymerization. ACS Appl Mater Interfaces 5(3):1017–1023CrossRef
Metadaten
Titel
Functionalization of cyclic olefin copolymer substrates with polyethylene glycol diacrylate for the in situ synthesis of immobilized nanoparticles
verfasst von
Josiane Saadé
Nina Declas
Pedro Marote
Claire Bordes
Karine Faure
Publikationsdatum
03.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0696-8

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Science 8/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.