Skip to main content
Erschienen in: Wireless Personal Communications 1/2022

29.09.2021

Gain Enhancement of Miniaturized Fractal Antenna with Help of Complementary Fractal Lens

verfasst von: Neeraj Rao

Erschienen in: Wireless Personal Communications | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article proposes a novel gain enhancement method for fractal antennas. The proposed fractal geometry for fractal antenna is inspired from a combination of two geometries, Giuseppe Peano and Minkowski. The proposed geometry shows miniaturization by shifting the lowest resonant frequency towards the lower frequency side. The gain of the fractal antenna is enhanced with the help of complementary fractal lens place on top of the patch at some distance. The enhancement in gain is about 1.5 dB. The 50% gain enhancement is contributed to the complementary fractal lens. The antenna is designed and fabricated on the dielectric material Roggers RO4003 lossy, with a dielectric constant of εr = 4.38.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deschamps, Georges A. (1953). Microstrip microwave antennas. Third USAF symposium on Antennas, 84. Deschamps, Georges A. (1953). Microstrip microwave antennas. Third USAF symposium on Antennas, 84.
2.
Zurück zum Zitat Shen, C., et al. (1977). Resonant frequency of a circular disc, printed-circuit antenna. Antennas and Propagation, IEEE Transactions on, 25(4), 595–596.CrossRef Shen, C., et al. (1977). Resonant frequency of a circular disc, printed-circuit antenna. Antennas and Propagation, IEEE Transactions on, 25(4), 595–596.CrossRef
3.
Zurück zum Zitat Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. W.H. Freeman and Company.MATH Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. W.H. Freeman and Company.MATH
4.
Zurück zum Zitat Kim, Y., & Jaggard, D. L. (1986). The fractal random array. Proceedings of the IEEE, 74(9), 1278–1280.CrossRef Kim, Y., & Jaggard, D. L. (1986). The fractal random array. Proceedings of the IEEE, 74(9), 1278–1280.CrossRef
5.
Zurück zum Zitat Cohen, N. (1995). Fractal Antennas Part 1: Introduction and the Fractal Quad (pp. 7–22). Communications Quarterly: Summer. Cohen, N. (1995). Fractal Antennas Part 1: Introduction and the Fractal Quad (pp. 7–22). Communications Quarterly: Summer.
6.
Zurück zum Zitat Cohen, N. (1996). Fractal Antennas Part 2: A Discussion of Relevant, but Disparate Qualities (pp. 53–66). Communications Quarterly: Summer. Cohen, N. (1996). Fractal Antennas Part 2: A Discussion of Relevant, but Disparate Qualities (pp. 53–66). Communications Quarterly: Summer.
7.
Zurück zum Zitat Puente-Baliarda, Carles, et al. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation, 46(4), 517–524.MathSciNetCrossRef Puente-Baliarda, Carles, et al. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation, 46(4), 517–524.MathSciNetCrossRef
8.
Zurück zum Zitat Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. Antennas and Propagation Magazine, IEEE, 45(1), 38–57.CrossRef Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. Antennas and Propagation Magazine, IEEE, 45(1), 38–57.CrossRef
9.
Zurück zum Zitat Neeraj, Rao, & Dinesh Kumar, V. (2017). Miniaturization of Microstrip Patch Antenna for Satellite Communication: A Novel Fractal Geometry Approach. Wireless Personal Communications, 97(3), 3673–3683.CrossRef Neeraj, Rao, & Dinesh Kumar, V. (2017). Miniaturization of Microstrip Patch Antenna for Satellite Communication: A Novel Fractal Geometry Approach. Wireless Personal Communications, 97(3), 3673–3683.CrossRef
10.
Zurück zum Zitat Naghshvarian-Jahromi, M., & Komjani, N. (2008). Novel fractal monopole wideband antenna. Journal of Electromagnetic Waves and Applications, 22(2–3), 195–205.CrossRef Naghshvarian-Jahromi, M., & Komjani, N. (2008). Novel fractal monopole wideband antenna. Journal of Electromagnetic Waves and Applications, 22(2–3), 195–205.CrossRef
11.
Zurück zum Zitat Gianvittorio, J. P., & Rahmat-Samii, Y. (2002). Fractal antennas: A novel antenna miniaturization technique, and applications. Antennas and Propagation magazine, IEEE, 44(1), 20–36.CrossRef Gianvittorio, J. P., & Rahmat-Samii, Y. (2002). Fractal antennas: A novel antenna miniaturization technique, and applications. Antennas and Propagation magazine, IEEE, 44(1), 20–36.CrossRef
12.
Zurück zum Zitat Waterhouse, Rodney. (2013). Microstrip patch antennas: a designer’s guide. Springer Science & Business Media. Waterhouse, Rodney. (2013). Microstrip patch antennas: a designer’s guide. Springer Science & Business Media.
13.
Zurück zum Zitat Whittow, W. G., et al. (2014). Applications and future prospects for microstrip antennas using heterogeneous and complex 3-D geometry substrates. Progress In Electromagnetics Research, 144, 271–280.CrossRef Whittow, W. G., et al. (2014). Applications and future prospects for microstrip antennas using heterogeneous and complex 3-D geometry substrates. Progress In Electromagnetics Research, 144, 271–280.CrossRef
14.
Zurück zum Zitat Chen Z. N. and Michael Y. W. Chia (2000). Broadband probe-fed plate antenna. Microwave Conference, 30th European. IEEE, 2000. Chen Z. N. and Michael Y. W. Chia (2000). Broadband probe-fed plate antenna. Microwave Conference, 30th European. IEEE, 2000.
15.
Zurück zum Zitat Tommaso, Cella, Orten, Pal, & Hjelmstad, Jens. (2013). MIMO geometry and antenna design for high capacity and improved coverage in mm-wave systems. International Journal of Antennas and Propagation, 2013, 1–9. Tommaso, Cella, Orten, Pal, & Hjelmstad, Jens. (2013). MIMO geometry and antenna design for high capacity and improved coverage in mm-wave systems. International Journal of Antennas and Propagation, 2013, 1–9.
16.
Zurück zum Zitat Yoon, Ji Hwan, et al. (2013). Reflectarray with EBG elements for improved radiation characteristics. Electronics Letters, 49(16), 975–976.CrossRef Yoon, Ji Hwan, et al. (2013). Reflectarray with EBG elements for improved radiation characteristics. Electronics Letters, 49(16), 975–976.CrossRef
17.
Zurück zum Zitat Razavi, Seyed Ali, et al. (2014). 2 2-slot element for 60-GHz planar array antenna realized on two doubled-sided PCBs using SIW cavity and EBG-type soft surface fed by microstrip-ridge gap waveguide. IEEE Transactions on Antennas and Propagation, 62(9), 4564–4573.CrossRef Razavi, Seyed Ali, et al. (2014). 2 2-slot element for 60-GHz planar array antenna realized on two doubled-sided PCBs using SIW cavity and EBG-type soft surface fed by microstrip-ridge gap waveguide. IEEE Transactions on Antennas and Propagation, 62(9), 4564–4573.CrossRef
18.
Zurück zum Zitat Neeraj, Rao, & Vishwakarma, Dinesh Kumar. (2016). Gain enhancement of microstrip patch antenna using Sierpinski fractal-shaped EBG. International Journal of Microwave and Wireless Technologies, 8(6), 915–919.CrossRef Neeraj, Rao, & Vishwakarma, Dinesh Kumar. (2016). Gain enhancement of microstrip patch antenna using Sierpinski fractal-shaped EBG. International Journal of Microwave and Wireless Technologies, 8(6), 915–919.CrossRef
19.
Zurück zum Zitat Balanis, Constantine A. (2005). Antenna theory: analysis and design. Wiley. Balanis, Constantine A. (2005). Antenna theory: analysis and design. Wiley.
Metadaten
Titel
Gain Enhancement of Miniaturized Fractal Antenna with Help of Complementary Fractal Lens
verfasst von
Neeraj Rao
Publikationsdatum
29.09.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09128-1

Weitere Artikel der Ausgabe 1/2022

Wireless Personal Communications 1/2022 Zur Ausgabe

Neuer Inhalt