Skip to main content
Erschienen in: Wireless Personal Communications 1/2022

26.05.2022

Gait Recognition Analysis for Human Identification Analysis-A Hybrid Deep Learning Process

verfasst von: B. Mathivanan, P. Perumal

Erschienen in: Wireless Personal Communications | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gait is an individual biometric behavior which can be detected based on distance which has different submissions in social security, forensic detection and crime prevention. Hence, in this paper, Advanced Deep Belief Neural Network with Black Widow Optimization (ADBNN-BWO) Algorithm is developed to identify the human emotions by human walking style images. This proposed methodology is working based on four stages like pre-processing, feature extraction, feature selection and classification. For the pre-processing, contrast enhancement median filter is used and the Hu Moments, GLCM, Fast Scale-invariant feature transform (F-SIFT), in addition skeleton features are used for the feature extraction. To extract the features efficiently, the feature extraction algorithm can be often very essential calculation. After that, feature selection is performed. Then the classification process is done by utilizing the proposed ADBNN-BWO Algorithm. Based on the proposed method, the human gait recognition is achieved which is utilized to identify the emotions from the walking style. The proposed method is validated by using the open source gait databases. The proposed method is implemented in MATLAB platform and their corresponding performances/outputs are evaluated. Moreover, the statistical measures of proposed method are also determined and compared with the existing method as Artificial Neural Network (ANN), Mayfly algorithm with Particle Swarm Optimization (MA-PSO), Recurrent Neural Network-PSO (RNN-PSO) and Adaptive Neuro Fuzzy Inference System (ANFIS) respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liao, R., Shiqi, Yu., An, W., & Huang, Y. (2020). A model-based gait recognition method with body pose and human prior knowledge. Pattern Recognition, 98, 107069.CrossRef Liao, R., Shiqi, Yu., An, W., & Huang, Y. (2020). A model-based gait recognition method with body pose and human prior knowledge. Pattern Recognition, 98, 107069.CrossRef
2.
Zurück zum Zitat Chi, W., Wang, J., & Meng, M.Q.-H. (2017). A gait recognition method for human following in service robots. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1429–1440.CrossRef Chi, W., Wang, J., & Meng, M.Q.-H. (2017). A gait recognition method for human following in service robots. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1429–1440.CrossRef
3.
Zurück zum Zitat Liu, G., Zhong, S., & Li, T. (2019). Gait recognition method of temporal–spatial HOG features in critical separation of Fourier correction points. Future Generation Computer Systems, 94, 11–15.CrossRef Liu, G., Zhong, S., & Li, T. (2019). Gait recognition method of temporal–spatial HOG features in critical separation of Fourier correction points. Future Generation Computer Systems, 94, 11–15.CrossRef
4.
Zurück zum Zitat Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., & Yagi, Y. (2018). Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Transactions on Computer Vision and Applications, 10(1), 1–14.CrossRef Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., & Yagi, Y. (2018). Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Transactions on Computer Vision and Applications, 10(1), 1–14.CrossRef
5.
Zurück zum Zitat Sun, J., Wang, Y., Li, J., Wan, W., Cheng, De., & Zhang, H. (2018). View-invariant gait recognition based on kinect skeleton feature. Multimedia Tools and Applications, 77(19), 24909–24935.CrossRef Sun, J., Wang, Y., Li, J., Wan, W., Cheng, De., & Zhang, H. (2018). View-invariant gait recognition based on kinect skeleton feature. Multimedia Tools and Applications, 77(19), 24909–24935.CrossRef
6.
Zurück zum Zitat Li, Y., Zhang, D., Zhang, J., Xun, L., Yan, Q., Zhang, J., Gao, Q., and Xia, Y. (2017). A convolutional neural network for gait recognition based on plantar pressure images. In Chinese Conference on Biometric Recognition (pp. 466-473). Springer Li, Y., Zhang, D., Zhang, J., Xun, L., Yan, Q., Zhang, J., Gao, Q., and Xia, Y. (2017). A convolutional neural network for gait recognition based on plantar pressure images. In Chinese Conference on Biometric Recognition (pp. 466-473). Springer
7.
Zurück zum Zitat Wang, X., & Yan, W. Q. (2020). Human gait recognition based on frame-by-frame gait energy images and convolutional long short-term memory. International Journal of Neural Systems, 30(01), 1950027.CrossRef Wang, X., & Yan, W. Q. (2020). Human gait recognition based on frame-by-frame gait energy images and convolutional long short-term memory. International Journal of Neural Systems, 30(01), 1950027.CrossRef
8.
Zurück zum Zitat Mandar, S., Srinivas, S., Ramaswamy, S., Raman, V., Hemnani, P. (2021). Human Re Identification Using Gait Analysis, In proceedings of IEEE International Conference on Intelligent Technologies (CONIT), June, 2021 Mandar, S., Srinivas, S., Ramaswamy, S., Raman, V., Hemnani, P. (2021). Human Re Identification Using Gait Analysis, In proceedings of IEEE International Conference on Intelligent Technologies (CONIT), June, 2021
9.
Zurück zum Zitat Battistone, F., & Petrosino, A. (2019). TGLSTM: a time based graph deep learning approach to gait recognition. Pattern Recognition Letters, 126, 132–138.CrossRef Battistone, F., & Petrosino, A. (2019). TGLSTM: a time based graph deep learning approach to gait recognition. Pattern Recognition Letters, 126, 132–138.CrossRef
10.
Zurück zum Zitat Alotaibi, M., & Mahmood, A. (2017). Improved gait recognition based on specialized deep convolutional neural network. Computer Vision and Image Understanding, 164, 103–110.CrossRef Alotaibi, M., & Mahmood, A. (2017). Improved gait recognition based on specialized deep convolutional neural network. Computer Vision and Image Understanding, 164, 103–110.CrossRef
11.
Zurück zum Zitat Zhu, X., Yun, L., Cheng, F., & Zhang, C. (2020). LFN: based on the convolutional neural network of gait recognition method. Journal of Physics: Conference Series, 1650(3), 032075. Zhu, X., Yun, L., Cheng, F., & Zhang, C. (2020). LFN: based on the convolutional neural network of gait recognition method. Journal of Physics: Conference Series, 1650(3), 032075.
12.
Zurück zum Zitat Yaacob, N. I., and Tahir, N. M. (2012). Feature selection for gait recognition, In 2012 IEEE Symposium on Humanities, Science and Engineering Research, (2012):379-383. Yaacob, N. I., and Tahir, N. M. (2012). Feature selection for gait recognition, In 2012 IEEE Symposium on Humanities, Science and Engineering Research, (2012):379-383.
13.
Zurück zum Zitat Fa-rong, G., Jia-jia, W., Xu-gang, Xi., Qing-shan, S., & Zhi-zeng, L. (2015). Gait recognition for lower extremity electromyographic signals based on PSO-SVM method. Journal of Electronics & Information Technology, 37(5), 1154–1159. Fa-rong, G., Jia-jia, W., Xu-gang, Xi., Qing-shan, S., & Zhi-zeng, L. (2015). Gait recognition for lower extremity electromyographic signals based on PSO-SVM method. Journal of Electronics & Information Technology, 37(5), 1154–1159.
14.
Zurück zum Zitat Mehmood, A., Khan, M. A., Sharif, M., Shaheen, M., Khan, S. A., Saba, T., Naveed Riaz and Ashraf, I. (2020). Prosperous human gait recognition: An end-to-end system based on pre-trained CNN features selection, Multimedia Tools and Applications, 1–21. Mehmood, A., Khan, M. A., Sharif, M., Shaheen, M., Khan, S. A., Saba, T., Naveed Riaz and Ashraf, I. (2020). Prosperous human gait recognition: An end-to-end system based on pre-trained CNN features selection, Multimedia Tools and Applications, 1–21.
15.
Zurück zum Zitat Al-Allaf, O. N. A., & AbdAlKader, S. A. (2015). Performance analysis of different feature extraction algorithms used with particle swarm optimization for gait recognition system. International Journal of Recent Technology and Engineering (IJRTE), 4(2), 23–30. Al-Allaf, O. N. A., & AbdAlKader, S. A. (2015). Performance analysis of different feature extraction algorithms used with particle swarm optimization for gait recognition system. International Journal of Recent Technology and Engineering (IJRTE), 4(2), 23–30.
16.
Zurück zum Zitat Dixit, U., Mishra, A., Shukla, A., & Tiwari, R. (2019). Texture classification using convolutional neural network optimized with whale optimization algorithm. SN Applied Sciences, 1(6), 1–11.CrossRef Dixit, U., Mishra, A., Shukla, A., & Tiwari, R. (2019). Texture classification using convolutional neural network optimized with whale optimization algorithm. SN Applied Sciences, 1(6), 1–11.CrossRef
17.
Zurück zum Zitat Angadi, S., & Nandyal, S. (2020). Human identification system based on spatial and temporal features in the video surveillance system. International Journal of Ambient Computing and Intelligence (IJACI), 11(3), 1–21.CrossRef Angadi, S., & Nandyal, S. (2020). Human identification system based on spatial and temporal features in the video surveillance system. International Journal of Ambient Computing and Intelligence (IJACI), 11(3), 1–21.CrossRef
18.
Zurück zum Zitat Arshad, H., Khan, M., Sharif, M., Yasmin, M., & Javed, M. (2019). Multi-level features fusion and selection for human gait recognition: An optimized framework of Bayesian model and binomial distribution. International Journal of Machine Learning and Cybernetics, 10(12), 3601–3618.CrossRef Arshad, H., Khan, M., Sharif, M., Yasmin, M., & Javed, M. (2019). Multi-level features fusion and selection for human gait recognition: An optimized framework of Bayesian model and binomial distribution. International Journal of Machine Learning and Cybernetics, 10(12), 3601–3618.CrossRef
19.
Zurück zum Zitat Choi, S., Kim, J., Kim, W., & Kim, C. (2019). Skeleton-based gait recognition via robust frame-level matching. IEEE Transactions on Information Forensics and Security, 14(10), 2577–2592.CrossRef Choi, S., Kim, J., Kim, W., & Kim, C. (2019). Skeleton-based gait recognition via robust frame-level matching. IEEE Transactions on Information Forensics and Security, 14(10), 2577–2592.CrossRef
20.
Zurück zum Zitat Zou, Q., Wang, Y., Wang, Q., Zhao, Yi., & Li, Q. (2020). Deep learning-based gait recognition using smartphones in the wild. IEEE Transactions on Information Forensics and Security, 15, 3197–3212.CrossRef Zou, Q., Wang, Y., Wang, Q., Zhao, Yi., & Li, Q. (2020). Deep learning-based gait recognition using smartphones in the wild. IEEE Transactions on Information Forensics and Security, 15, 3197–3212.CrossRef
21.
Zurück zum Zitat Chao, H., Wang, K., He, Y., Zhang, J., & Feng, J. (2021). GaitSet: cross-view gait recognition through utilizing gait as a deep set, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1 Chao, H., Wang, K., He, Y., Zhang, J., & Feng, J. (2021). GaitSet: cross-view gait recognition through utilizing gait as a deep set, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1
22.
Zurück zum Zitat Gajanand, G. (2011). Algorithm for image processing using improved median filter and comparison of mean, median and improved median filter. International Journal of Soft Computing and Engineering, 1(5), 304–311. Gajanand, G. (2011). Algorithm for image processing using improved median filter and comparison of mean, median and improved median filter. International Journal of Soft Computing and Engineering, 1(5), 304–311.
23.
Zurück zum Zitat Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications, 3(5), 1–5. Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications, 3(5), 1–5.
24.
Zurück zum Zitat Chiu, L.-C., Chang, T.-S., Chen, J.-Y., & Chang, N.Y.-C. (2013). Fast SIFT design for real-time visual feature extraction. IEEE Transactions on Image Processing, 22(8), 3158–3167.CrossRef Chiu, L.-C., Chang, T.-S., Chen, J.-Y., & Chang, N.Y.-C. (2013). Fast SIFT design for real-time visual feature extraction. IEEE Transactions on Image Processing, 22(8), 3158–3167.CrossRef
25.
Zurück zum Zitat Luvizon, D. C., Tabia, H., & Picard, D. (2017). Learning features combination for human action recognition from skeleton sequences. Pattern Recognition Letters, 99, 13–20.CrossRef Luvizon, D. C., Tabia, H., & Picard, D. (2017). Learning features combination for human action recognition from skeleton sequences. Pattern Recognition Letters, 99, 13–20.CrossRef
26.
Zurück zum Zitat Nasser, M., Salim, N., Hamza, H., Saeed, F., & Rabiu, I. (2021). Improved deep learning based method for molecular similarity searching using stack of deep belief networks. Molecules, 26(1), 128.CrossRef Nasser, M., Salim, N., Hamza, H., Saeed, F., & Rabiu, I. (2021). Improved deep learning based method for molecular similarity searching using stack of deep belief networks. Molecules, 26(1), 128.CrossRef
27.
Zurück zum Zitat Houssein, E. H., Helmy, B. E., Oliva, D., Elngar, A. A., & Shaban, H. (2012). A novel black widow optimization algorithm for multilevel thresholding image segmentation. Expert Systems with Applications, 167, 114159.CrossRef Houssein, E. H., Helmy, B. E., Oliva, D., Elngar, A. A., & Shaban, H. (2012). A novel black widow optimization algorithm for multilevel thresholding image segmentation. Expert Systems with Applications, 167, 114159.CrossRef
28.
Zurück zum Zitat Suresh, S., Pushparaj, J., Asha, C. S., Lal, S., & Reddy, C. S. (2021). Dehazing of satellite images using adaptive black widow optimization-based framework. International Journal of Remote Sensing, 42(13), 5072–5090.CrossRef Suresh, S., Pushparaj, J., Asha, C. S., Lal, S., & Reddy, C. S. (2021). Dehazing of satellite images using adaptive black widow optimization-based framework. International Journal of Remote Sensing, 42(13), 5072–5090.CrossRef
Metadaten
Titel
Gait Recognition Analysis for Human Identification Analysis-A Hybrid Deep Learning Process
verfasst von
B. Mathivanan
P. Perumal
Publikationsdatum
26.05.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09758-z

Weitere Artikel der Ausgabe 1/2022

Wireless Personal Communications 1/2022 Zur Ausgabe

Neuer Inhalt