Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2024

01.02.2024

Gallium oxide as an electron transport, a window, an UV and a hole blocking layer for high performance perovskite solar cell: a simulation study

verfasst von: Sarra Barkat, Afak Meftah, Madani Labed, Widad Laiadi, Maroua Abdallaoui, Amjad Meftah, Nouredine Sengouga, You Seung Rim

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Perovskite solar cells (PSCs) show a great promise for high-efficiency and cost-effective photovoltaic devices. This study focuses on the use of beta-gallium oxide (β-Ga2O3) as a versatile component in PSCs. β-Ga2O3 serves as the electron transport layer (ETL), a window material that reduces reflection of visible light, a UV absorption layer for perovskite stability, and a hole blocking layer (HBL) due to its high valence band-offset. Additionally, a bilayer of cuprous oxide/silicon (Cu2O/p-Si) is employed as the hole transport and electron blocking layer (HTL and EBL), while methylammonium lead iodide (CH3NH3PbI3) serves as the perovskite absorber. Numerical simulations using SILVACO-TCAD demonstrate that replacing ZnO with β-Ga2O3 as the ETL leads to a significant enhancement in PSC performance. The optimized device exhibits a power conversion efficiency (PCE) of 23.02%, an open circuit voltage (Voc) of 0.95 V, a short circuit current density (Jsc) of 31.12 mA/cm2, and a fill factor (FF) of 77.53%. The study highlights the benefits of using β-Ga2O3 and Cu2O/p-Si in PSCs, emphasizing their crucial role in improving device performance. Our findings will help perovskite solar cells designers to eliminate one of the causes of stability which is UV radiations by absorption utilizing a β-Ga2O3 layer at the front and which acts as an ETL and a window as well, hence contributing to material and cost reduction. The Cu2O/p-Si used as an HTL the PSC achieve a PCE close to the Shockley–Queisser limit which is 26.6%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bi, D., Moon, S.-J., Häggman, L., Boschloo, G., Yang, L., Johansson, E.M.J., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 3, 18762–18766 (2013). https://doi.org/10.1039/C3RA43228ACrossRefADS Bi, D., Moon, S.-J., Häggman, L., Boschloo, G., Yang, L., Johansson, E.M.J., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 3, 18762–18766 (2013). https://​doi.​org/​10.​1039/​C3RA43228ACrossRefADS
Zurück zum Zitat De Wolf, S., Holovsky, J., Moon, S.-J., Löper, P., Niesen, B., Ledinsky, M., Haug, F.-J., Yum, J.-H., Ballif, C.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014). https://doi.org/10.1021/jz500279bCrossRefPubMed De Wolf, S., Holovsky, J., Moon, S.-J., Löper, P., Niesen, B., Ledinsky, M., Haug, F.-J., Yum, J.-H., Ballif, C.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014). https://​doi.​org/​10.​1021/​jz500279bCrossRefPubMed
Zurück zum Zitat Dong, H., Pang, S., Xu, Y., Li, Z., Zhang, Z., Zhu, W., Chen, D., Xi, H., Lin, Z., Zhang, J., Hao, Y., Zhang, C.: ultrawide band gap oxide semiconductor-triggered performance improvement of perovskite solar cells via the novel Ga2O3/SnO2 composite electron-transporting bilayer. ACS Appl. Mater. Interfaces 12, 54703–54710 (2020). https://doi.org/10.1021/acsami.0c16168CrossRefPubMed Dong, H., Pang, S., Xu, Y., Li, Z., Zhang, Z., Zhu, W., Chen, D., Xi, H., Lin, Z., Zhang, J., Hao, Y., Zhang, C.: ultrawide band gap oxide semiconductor-triggered performance improvement of perovskite solar cells via the novel Ga2O3/SnO2 composite electron-transporting bilayer. ACS Appl. Mater. Interfaces 12, 54703–54710 (2020). https://​doi.​org/​10.​1021/​acsami.​0c16168CrossRefPubMed
Zurück zum Zitat Fakhri, N., Salay Naderi, M., Gholami Farkoush, S., SaeidNahaei, S., Park, S.-N., Rhee, S.-B.: Simulation of perovskite solar cells optimized by the inverse planar method in SILVACO: 3D electrical and optical models. Energies 14(18), 5944 (2021)CrossRef Fakhri, N., Salay Naderi, M., Gholami Farkoush, S., SaeidNahaei, S., Park, S.-N., Rhee, S.-B.: Simulation of perovskite solar cells optimized by the inverse planar method in SILVACO: 3D electrical and optical models. Energies 14(18), 5944 (2021)CrossRef
Zurück zum Zitat Hajjiah, A., Kandas, I., Shehata, N.: Efficiency enhancement of perovskite solar cells with plasmonic nanoparticles: a simulation study. Materials 11(9), 1626 (2018)CrossRefPubMedPubMedCentralADS Hajjiah, A., Kandas, I., Shehata, N.: Efficiency enhancement of perovskite solar cells with plasmonic nanoparticles: a simulation study. Materials 11(9), 1626 (2018)CrossRefPubMedPubMedCentralADS
Zurück zum Zitat Hajjiah, A., Badran, H., Kandas, I., Shehata, N.: Perovskite Solar Cell with Added Gold/Silver Nanoparticles: Enhanced Optical and Electrical Characteristics, (2020) Hajjiah, A., Badran, H., Kandas, I., Shehata, N.: Perovskite Solar Cell with Added Gold/Silver Nanoparticles: Enhanced Optical and Electrical Characteristics, (2020)
Zurück zum Zitat Hang, Z., Ao, Y.U.E.H.: Solar blind deep ultraviolet β-Ga 2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt. Mater. Express 8, 2941–2947 (2018)CrossRefADS Hang, Z., Ao, Y.U.E.H.: Solar blind deep ultraviolet β-Ga 2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt. Mater. Express 8, 2941–2947 (2018)CrossRefADS
Zurück zum Zitat Heo, S., Seo, G., Lee, Y., Lee, D., Seol, M., Lee, J., Park, J.-B., Kim, K., Yun, D.-J., Kim, Y.S., Shin, J.K., Ahn, T.K., Nazeeruddin, M.K.: Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energy Environ. Sci. 10, 1128–1133 (2017). https://doi.org/10.1039/C7EE00303JCrossRef Heo, S., Seo, G., Lee, Y., Lee, D., Seol, M., Lee, J., Park, J.-B., Kim, K., Yun, D.-J., Kim, Y.S., Shin, J.K., Ahn, T.K., Nazeeruddin, M.K.: Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energy Environ. Sci. 10, 1128–1133 (2017). https://​doi.​org/​10.​1039/​C7EE00303JCrossRef
Zurück zum Zitat Lei, T., Dong, H., Xi, J., Niu, Y., Xu, J., Yuan, F., Jiao, B., Zhang, W., Hou, X., Wu, Z.: Highly-efficient and low-temperature perovskite solar cells by employing a Bi-hole transport layer consisting of vanadium oxide and copper phthalocyanine. Chem. Commun. 54, 6177–6180 (2018). https://doi.org/10.1039/C8CC03672ACrossRef Lei, T., Dong, H., Xi, J., Niu, Y., Xu, J., Yuan, F., Jiao, B., Zhang, W., Hou, X., Wu, Z.: Highly-efficient and low-temperature perovskite solar cells by employing a Bi-hole transport layer consisting of vanadium oxide and copper phthalocyanine. Chem. Commun. 54, 6177–6180 (2018). https://​doi.​org/​10.​1039/​C8CC03672ACrossRef
Zurück zum Zitat Löper, P., Stuckelberger, M., Niesen, B., Werner, J., Filipič, M., Moon, S.-J., Yum, J.-H., Topič, M., De Wolf, S., Ballif, C.: Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6, 66–71 (2015). https://doi.org/10.1021/jz502471hCrossRefPubMed Löper, P., Stuckelberger, M., Niesen, B., Werner, J., Filipič, M., Moon, S.-J., Yum, J.-H., Topič, M., De Wolf, S., Ballif, C.: Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6, 66–71 (2015). https://​doi.​org/​10.​1021/​jz502471hCrossRefPubMed
Zurück zum Zitat Ma, J., Zheng, M., Chen, C., Zhu, Z., Zheng, X., Chen, Z., Guo, Y., Liu, C., Yan, Y., Fang, G.: Efficient and stable nonfullerene-graded heterojunction inverted perovskite solar cells with inorganic Ga2O3 tunneling protective nanolayer. Adv. Funct. Mater. 28, 1804128 (2018). https://doi.org/10.1002/adfm.201804128CrossRef Ma, J., Zheng, M., Chen, C., Zhu, Z., Zheng, X., Chen, Z., Guo, Y., Liu, C., Yan, Y., Fang, G.: Efficient and stable nonfullerene-graded heterojunction inverted perovskite solar cells with inorganic Ga2O3 tunneling protective nanolayer. Adv. Funct. Mater. 28, 1804128 (2018). https://​doi.​org/​10.​1002/​adfm.​201804128CrossRef
Zurück zum Zitat Nguyen, V.S., Sekkat, A., Bellet, D., Chichignoud, G., Kaminski-Cachopo, A., Muñoz-Rojas, D., Favre, W.: Open-air, low-temperature deposition of phase pure Cu2O thin films as efficient hole-transporting layers for silicon heterojunction solar cells. J. Mater. Chem. a. 9, 15968–15974 (2021). https://doi.org/10.1039/D1TA02931BCrossRef Nguyen, V.S., Sekkat, A., Bellet, D., Chichignoud, G., Kaminski-Cachopo, A., Muñoz-Rojas, D., Favre, W.: Open-air, low-temperature deposition of phase pure Cu2O thin films as efficient hole-transporting layers for silicon heterojunction solar cells. J. Mater. Chem. a. 9, 15968–15974 (2021). https://​doi.​org/​10.​1039/​D1TA02931BCrossRef
Zurück zum Zitat Schütz, E.R., Fakharuddin, A., Yalcinkaya, Y., Ochoa-Martinez, E., Bijani, S., Yusoff, M., Vasilopoulou, M., Seewald, T., Steiner, U., Weber, S.A., Schmidt-Mende, L.: Reduced defect density in crystalline halide perovskite films via methylamine treatment for the application in photodetectors. APL Mater. 10, 81110 (2022). https://doi.org/10.1063/5.0093333CrossRef Schütz, E.R., Fakharuddin, A., Yalcinkaya, Y., Ochoa-Martinez, E., Bijani, S., Yusoff, M., Vasilopoulou, M., Seewald, T., Steiner, U., Weber, S.A., Schmidt-Mende, L.: Reduced defect density in crystalline halide perovskite films via methylamine treatment for the application in photodetectors. APL Mater. 10, 81110 (2022). https://​doi.​org/​10.​1063/​5.​0093333CrossRef
Zurück zum Zitat Shasti, M., Mortezaali, A.: Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole-transport materials for application in perovskite solar cells. Phys. Status Solidi. 216, 1900337 (2019)CrossRefADS Shasti, M., Mortezaali, A.: Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole-transport materials for application in perovskite solar cells. Phys. Status Solidi. 216, 1900337 (2019)CrossRefADS
Zurück zum Zitat Software, D.S.: ATLAS User ’ s Manual. Software, D.S.: ATLAS User ’ s Manual.
Zurück zum Zitat Sze, S.M., Ng, K.K.: Physics of semiconductor devices. Wiley, Hoboken (2006)CrossRef Sze, S.M., Ng, K.K.: Physics of semiconductor devices. Wiley, Hoboken (2006)CrossRef
Zurück zum Zitat Tilli, M., Haapalinna, A.: Chapter 1 - Properties of Silicon. In: Tilli, M., Motooka, T., Airaksinen, V.-M., Franssila, S., Paulasto-Kröckel, M., Lindroos (eds.) Micro and nano technologies, pp. 3–17. William Andrew Publishing, Boston (2015) Tilli, M., Haapalinna, A.: Chapter 1 - Properties of Silicon. In: Tilli, M., Motooka, T., Airaksinen, V.-M., Franssila, S., Paulasto-Kröckel, M., Lindroos (eds.) Micro and nano technologies, pp. 3–17. William Andrew Publishing, Boston (2015)
Zurück zum Zitat Yusoff, M., Bin, A.R., Vasilopoulou, M., Georgiadou, D.G., Palilis, L.C., Abate, A., Nazeeruddin, M.K.: Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ. Sci. 14, 2906–2953 (2021). https://doi.org/10.1039/D1EE00062DCrossRef Yusoff, M., Bin, A.R., Vasilopoulou, M., Georgiadou, D.G., Palilis, L.C., Abate, A., Nazeeruddin, M.K.: Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ. Sci. 14, 2906–2953 (2021). https://​doi.​org/​10.​1039/​D1EE00062DCrossRef
Metadaten
Titel
Gallium oxide as an electron transport, a window, an UV and a hole blocking layer for high performance perovskite solar cell: a simulation study
verfasst von
Sarra Barkat
Afak Meftah
Madani Labed
Widad Laiadi
Maroua Abdallaoui
Amjad Meftah
Nouredine Sengouga
You Seung Rim
Publikationsdatum
01.02.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05780-y

Weitere Artikel der Ausgabe 2/2024

Optical and Quantum Electronics 2/2024 Zur Ausgabe

Neuer Inhalt