Skip to main content
Erschienen in: Journal of Electronic Materials 10/2022

26.07.2022 | Review Article

Gamma Radiation-Induced Synthesis of Polyaniline-Based Nanoparticles/Nanocomposites

verfasst von: Sajid Ahmad, Raheel Hammad, Seemin Rubab

Erschienen in: Journal of Electronic Materials | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This review summarizes the significance of gamma radiation for the synthesis of polyaniline (PANI)-based nanoparticles and nanocomposites for various applications. In many of its applications (anti-corrosive coatings, thermoelectrics, gas sensing, biosensors, etc.), PANI is important because of its conductive nature and ease of synthesis. A variety of techniques, such as chemical, mechanical, and electrochemical methods, have been used for synthesizing PANI nanoparticles by top-down or bottom-up approaches. However, nanoparticles synthesized as a result of gamma radiation treatment produce PANI nanoparticles in their pure form, i.e., without the use of any chemical or catalyst. The solution mixture generates active species (both reducing and oxidizing in nature) by gamma hydrolysis, which plays an important role in the initiation and propagation of the polymerization reaction. In addition to polymerization, gamma irradiation is a useful technique for making various in situ nanocomposites simultaneously in a single pot during radiation treatment.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V.R. Gowariker, N. Viswanathan and J. Sreedhar, Polymer science, (New Age International, 1986) V.R. Gowariker, N. Viswanathan and J. Sreedhar, Polymer science, (New Age International, 1986)
2.
Zurück zum Zitat J.E. Mark, Physical properties of polymers handbook (Newyork: Springer, 2007).CrossRef J.E. Mark, Physical properties of polymers handbook (Newyork: Springer, 2007).CrossRef
3.
Zurück zum Zitat R.O. Ebewele, Polymer science and technology (United States: CRC Press, 2000).CrossRef R.O. Ebewele, Polymer science and technology (United States: CRC Press, 2000).CrossRef
4.
Zurück zum Zitat H.R. Kricheldorf, Handbook of polymer synthesis (United States: CRC Press, 1991). H.R. Kricheldorf, Handbook of polymer synthesis (United States: CRC Press, 1991).
5.
Zurück zum Zitat H. Shirakawa, A. Mcdiarmid, and A. Heeger, Twenty-five years of conducting polymers. Chem. Commun. 1, 1 (2003).CrossRef H. Shirakawa, A. Mcdiarmid, and A. Heeger, Twenty-five years of conducting polymers. Chem. Commun. 1, 1 (2003).CrossRef
6.
Zurück zum Zitat I. Cheng and S. Wagner, Flexible Electronics (Newyork: Springer, 2009). I. Cheng and S. Wagner, Flexible Electronics (Newyork: Springer, 2009).
7.
Zurück zum Zitat T.K. Das and S. Prusty, Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 51, 1487 (2012).CrossRef T.K. Das and S. Prusty, Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 51, 1487 (2012).CrossRef
8.
Zurück zum Zitat M. Angelopoulos, Conducting polymers in microelectronics. IBM J. Res. Dev. 45, 57 (2001).CrossRef M. Angelopoulos, Conducting polymers in microelectronics. IBM J. Res. Dev. 45, 57 (2001).CrossRef
9.
10.
Zurück zum Zitat P. Chandrasekhar, Conducting polymers, fundamentals and applications: a practical approach, (Springer Science & Business Media, 2013) P. Chandrasekhar, Conducting polymers, fundamentals and applications: a practical approach, (Springer Science & Business Media, 2013)
11.
Zurück zum Zitat S. Thomas and P. Visakh, Handbook of Engineering and Specialty Thermoplastics (Hoboken, NJ, USA: John Wiley & Sons, 2011).CrossRef S. Thomas and P. Visakh, Handbook of Engineering and Specialty Thermoplastics (Hoboken, NJ, USA: John Wiley & Sons, 2011).CrossRef
12.
Zurück zum Zitat B. Zhao, K. Neoh, and E. Kang, Environmental stability of electrically conductive viologen–polyaniline systems. J. Appl. Polym. Sci. 86, 2099 (2002).CrossRef B. Zhao, K. Neoh, and E. Kang, Environmental stability of electrically conductive viologen–polyaniline systems. J. Appl. Polym. Sci. 86, 2099 (2002).CrossRef
13.
Zurück zum Zitat A.A. Syed and M.K. Dinesan, Polyaniline-A novel polymeric material. Talanta 38, 815 (1991).CrossRef A.A. Syed and M.K. Dinesan, Polyaniline-A novel polymeric material. Talanta 38, 815 (1991).CrossRef
14.
Zurück zum Zitat B. Wessling, Polyaniline on the metallic side of the insulator-to-metal transition due to dispersion: the basis for successful Nano-technology and industrial applications of organic metals. Synth. Met. 102, 1396 (1999).CrossRef B. Wessling, Polyaniline on the metallic side of the insulator-to-metal transition due to dispersion: the basis for successful Nano-technology and industrial applications of organic metals. Synth. Met. 102, 1396 (1999).CrossRef
15.
Zurück zum Zitat S. Ramnani, J. Biswal, and S. Sabharwal, Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis. Radiat. Phys. Chem. 76, 1290 (2007).CrossRef S. Ramnani, J. Biswal, and S. Sabharwal, Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis. Radiat. Phys. Chem. 76, 1290 (2007).CrossRef
16.
Zurück zum Zitat B.I. Kharisov, O.V. Kharissova, and U.O. Méndez, Radiation synthesis of materials and compounds (United States: CRC Press, 2016).CrossRef B.I. Kharisov, O.V. Kharissova, and U.O. Méndez, Radiation synthesis of materials and compounds (United States: CRC Press, 2016).CrossRef
17.
Zurück zum Zitat H. Wilski, The radiation induced degradation of polymers. Int. J. Radiat.Appl. Instrumentation part C. Rad.Phys.Chem. 29(1), 1 (1987) H. Wilski, The radiation induced degradation of polymers. Int. J. Radiat.Appl. Instrumentation part C. Rad.Phys.Chem. 29(1), 1 (1987)
18.
Zurück zum Zitat J. Stejskal and R. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem. 74(5), 857 (2002) J. Stejskal and R. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem. 74(5), 857 (2002)
19.
Zurück zum Zitat A. Macdiarmid, S. Manohar, J. Masters, Y. Sun, H. Weiss, and A. Epstein, Polyaniline: synthesis and properties of pernigraniline base. Synth. Met. 41, 621 (1991).CrossRef A. Macdiarmid, S. Manohar, J. Masters, Y. Sun, H. Weiss, and A. Epstein, Polyaniline: synthesis and properties of pernigraniline base. Synth. Met. 41, 621 (1991).CrossRef
20.
Zurück zum Zitat Y. Cao, A. Andreatta, A.J. Heeger, and P. Smith, Influence of chemical polymerization conditions on the properties of polyaniline. Polymer 30, 2305 (1989).CrossRef Y. Cao, A. Andreatta, A.J. Heeger, and P. Smith, Influence of chemical polymerization conditions on the properties of polyaniline. Polymer 30, 2305 (1989).CrossRef
21.
Zurück zum Zitat D. Sazou and C. Georgolios, Formation of conducting polyaniline coatings on iron surfaces by electropolymerization of aniline in aqueous solutions. J. Electroanal. Chem. 429, 81 (1997).CrossRef D. Sazou and C. Georgolios, Formation of conducting polyaniline coatings on iron surfaces by electropolymerization of aniline in aqueous solutions. J. Electroanal. Chem. 429, 81 (1997).CrossRef
22.
Zurück zum Zitat X. Zhang, R. Chan-Yu-King, A. Jose, and S.K. Manohar, Nanofibers of polyaniline synthesized by interfacial polymerization. Synth. Met. 145, 23 (2004).CrossRef X. Zhang, R. Chan-Yu-King, A. Jose, and S.K. Manohar, Nanofibers of polyaniline synthesized by interfacial polymerization. Synth. Met. 145, 23 (2004).CrossRef
23.
Zurück zum Zitat J.C. Michaelson and A. Mcevoy,Interfacial polymerization of aniline. J. Chem. Soc. Chem. Commun., 79 (1994) J.C. Michaelson and A. Mcevoy,Interfacial polymerization of aniline. J. Chem. Soc. Chem. Commun., 79 (1994)
24.
Zurück zum Zitat K.-P. Lee, A.I. Gopalan, P. Santhosh, S.H. Lee, and Y.C. Nho, Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Compos. Sci. Technol. 67, 811 (2007).CrossRef K.-P. Lee, A.I. Gopalan, P. Santhosh, S.H. Lee, and Y.C. Nho, Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Compos. Sci. Technol. 67, 811 (2007).CrossRef
25.
Zurück zum Zitat N.M. Al-Hada, A.M. Al-Ghaili, A.A. Baqer, M.A. Saleh, H. Kasim, E. Saion, J. Liu, and W. Jihua, Radiation-induced synthesis, electrical and optical characterization of conducting polyaniline of PANI/PVA composites. Mater. Sci. Eng. B 261, 114758 (2020).CrossRef N.M. Al-Hada, A.M. Al-Ghaili, A.A. Baqer, M.A. Saleh, H. Kasim, E. Saion, J. Liu, and W. Jihua, Radiation-induced synthesis, electrical and optical characterization of conducting polyaniline of PANI/PVA composites. Mater. Sci. Eng. B 261, 114758 (2020).CrossRef
26.
Zurück zum Zitat J. Huang, J.A. Moore, J.H. Acquaye, and R.B. Kaner, Mechanochemical route to the conducting polymer polyaniline. Macromolecules 38, 317 (2005).CrossRef J. Huang, J.A. Moore, J.H. Acquaye, and R.B. Kaner, Mechanochemical route to the conducting polymer polyaniline. Macromolecules 38, 317 (2005).CrossRef
27.
Zurück zum Zitat N. Gospodinova, P. Mokreva, and L. Terlemezyan, Chemical oxidative polymerization of aniline in aqueous medium without added acids. Polymer 34, 2438 (1993).CrossRef N. Gospodinova, P. Mokreva, and L. Terlemezyan, Chemical oxidative polymerization of aniline in aqueous medium without added acids. Polymer 34, 2438 (1993).CrossRef
28.
Zurück zum Zitat K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh, and E. Hasegawa, Thermal stability of chemically synthesized polyaniline. Synth. Met. 62, 229 (1994).CrossRef K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh, and E. Hasegawa, Thermal stability of chemically synthesized polyaniline. Synth. Met. 62, 229 (1994).CrossRef
29.
Zurück zum Zitat X. Jing, Y. Wang, D. Wu, and J. Qiang, Sonochemical synthesis of polyaniline nanofibers. Ultrason. Sonochem. 14, 75 (2007).CrossRef X. Jing, Y. Wang, D. Wu, and J. Qiang, Sonochemical synthesis of polyaniline nanofibers. Ultrason. Sonochem. 14, 75 (2007).CrossRef
30.
Zurück zum Zitat Y. Wang, X. Jing, and J. Kong, Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synth. Met. 157, 269 (2007).CrossRef Y. Wang, X. Jing, and J. Kong, Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synth. Met. 157, 269 (2007).CrossRef
31.
Zurück zum Zitat H. Qiu, J. Zhai, S. Li, L. Jiang, and M. Wan, Oriented growth of self-assembled polyaniline nanowire arrays using a novel method. Adv. Funct. Mater. 13, 925 (2003).CrossRef H. Qiu, J. Zhai, S. Li, L. Jiang, and M. Wan, Oriented growth of self-assembled polyaniline nanowire arrays using a novel method. Adv. Funct. Mater. 13, 925 (2003).CrossRef
32.
Zurück zum Zitat H. Xia and Q. Wang, Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. J. Nanoparticle Res. 3, 399 (2001).CrossRef H. Xia and Q. Wang, Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. J. Nanoparticle Res. 3, 399 (2001).CrossRef
33.
Zurück zum Zitat B. Kim, S. Oh, M. Han, and S. Im, Preparation of PANI-coated poly (styrene-co-styrene sulfonate) nanoparticles. Polymer 43, 111 (2002).CrossRef B. Kim, S. Oh, M. Han, and S. Im, Preparation of PANI-coated poly (styrene-co-styrene sulfonate) nanoparticles. Polymer 43, 111 (2002).CrossRef
34.
Zurück zum Zitat H. Wang, J.T. Lai, W. Lin and D. Mo, In Conference on Lasers and Electro-Optics, (Optical Society of America: 1995), p CWF59 H. Wang, J.T. Lai, W. Lin and D. Mo, In Conference on Lasers and Electro-Optics, (Optical Society of America: 1995), p CWF59
35.
Zurück zum Zitat H. Noby, A. El-Shazly, M. Elkady, and M. Ohshima, Strong acid doping for the preparation of conductive polyaniline nanoflowers, nanotubes, and nanofibers. Polymer 182, 121848 (2019).CrossRef H. Noby, A. El-Shazly, M. Elkady, and M. Ohshima, Strong acid doping for the preparation of conductive polyaniline nanoflowers, nanotubes, and nanofibers. Polymer 182, 121848 (2019).CrossRef
36.
Zurück zum Zitat P. Araujo, R. Santos, and E. Araujo, Polyaniline nanofibers as a new gamma radiation stabilizer agent for PMMA. Express Polym. Lett. 1, 385 (2007).CrossRef P. Araujo, R. Santos, and E. Araujo, Polyaniline nanofibers as a new gamma radiation stabilizer agent for PMMA. Express Polym. Lett. 1, 385 (2007).CrossRef
37.
Zurück zum Zitat S. Bhadra, N.K. Singha, and D. Khastgir, Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J. Appl. Polym. Sci. 104, 1900 (2007).CrossRef S. Bhadra, N.K. Singha, and D. Khastgir, Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J. Appl. Polym. Sci. 104, 1900 (2007).CrossRef
38.
Zurück zum Zitat E.L. Wittbecker and P.W. Morgan, Interfacial polycondensation. I. J. Polym. Sci. 40, 289 (1959).CrossRef E.L. Wittbecker and P.W. Morgan, Interfacial polycondensation. I. J. Polym. Sci. 40, 289 (1959).CrossRef
39.
Zurück zum Zitat S. Grätz, and L. Borchardt, Mechanochemical polymerization–controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill. RSC Adv. 6, 64799 (2016).CrossRef S. Grätz, and L. Borchardt, Mechanochemical polymerization–controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill. RSC Adv. 6, 64799 (2016).CrossRef
40.
Zurück zum Zitat Y. Jiang, J. Ji, L. Huang, C. He, J. Zhang, X. Wang, and Y. Yang, One-pot mechanochemical exfoliation of graphite and in situ polymerization of aniline for the production of graphene/polyaniline composites for high-performance supercapacitors. RSC Adv. 10, 44688 (2020).CrossRef Y. Jiang, J. Ji, L. Huang, C. He, J. Zhang, X. Wang, and Y. Yang, One-pot mechanochemical exfoliation of graphite and in situ polymerization of aniline for the production of graphene/polyaniline composites for high-performance supercapacitors. RSC Adv. 10, 44688 (2020).CrossRef
41.
Zurück zum Zitat S. Yoshimoto, F. Ohashi, Y. Ohnishi, and T. Nonami, Synthesis of polyaniline–montmorillonite nanocomposites by the mechanochemical intercalation method. Synth. Met. 145, 265 (2004).CrossRef S. Yoshimoto, F. Ohashi, Y. Ohnishi, and T. Nonami, Synthesis of polyaniline–montmorillonite nanocomposites by the mechanochemical intercalation method. Synth. Met. 145, 265 (2004).CrossRef
42.
Zurück zum Zitat W.M. De Azevedo, A.P. Da Costa Lima and E.S. De Araujo,Radiation induced effects on electrical properties of polyaniline. Radiat. Prot. Dosim. 84, 77 (1999) W.M. De Azevedo, A.P. Da Costa Lima and E.S. De Araujo,Radiation induced effects on electrical properties of polyaniline. Radiat. Prot. Dosim. 84, 77 (1999)
43.
Zurück zum Zitat S.K. Pillalamarri, F.D. Blum, A.T. Tokuhiro, J.G. Story, and M.F. Bertino, Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem. Mater. 17, 227 (2005).CrossRef S.K. Pillalamarri, F.D. Blum, A.T. Tokuhiro, J.G. Story, and M.F. Bertino, Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem. Mater. 17, 227 (2005).CrossRef
44.
Zurück zum Zitat P. Zarrintaj and M.R. Saeb, In Fundamentals and Emerging Applications of Polyaniline, (Elsevier: 2019), p.91 P. Zarrintaj and M.R. Saeb, In Fundamentals and Emerging Applications of Polyaniline, (Elsevier: 2019), p.91
45.
Zurück zum Zitat D. Swantomo, K.T. Basuki, S. Sigit, and Y. Yunus, Preparation of graphene-polyaniline-cellulose double network hydrogels using one pot method by gamma irradiation with electrochemical properties. Indones. J. Chem. 18, 411 (2018).CrossRef D. Swantomo, K.T. Basuki, S. Sigit, and Y. Yunus, Preparation of graphene-polyaniline-cellulose double network hydrogels using one pot method by gamma irradiation with electrochemical properties. Indones. J. Chem. 18, 411 (2018).CrossRef
46.
Zurück zum Zitat X. Tian, K. He, B. Wang, S. Yu, C. Hao, K. Chen, and Q. Lei, Flower-like Fe2O3/polyaniline core/shell nanocomposite and its electroheological properties. Colloids Surf. A Physicochem. Eng. Asp. 498, 185 (2016).CrossRef X. Tian, K. He, B. Wang, S. Yu, C. Hao, K. Chen, and Q. Lei, Flower-like Fe2O3/polyaniline core/shell nanocomposite and its electroheological properties. Colloids Surf. A Physicochem. Eng. Asp. 498, 185 (2016).CrossRef
47.
Zurück zum Zitat B. Wang, C. Liu, Y. Yin, S. Yu, K. Chen, P. Liu, and B. Liang, Double template assisting synthesized core–shell structured titania/polyaniline nanocomposite and its smart electrorheological response. Compos. Sci. Technol. 86, 89 (2013).CrossRef B. Wang, C. Liu, Y. Yin, S. Yu, K. Chen, P. Liu, and B. Liang, Double template assisting synthesized core–shell structured titania/polyaniline nanocomposite and its smart electrorheological response. Compos. Sci. Technol. 86, 89 (2013).CrossRef
48.
Zurück zum Zitat S. Khalili, B. Khoshandam, and M. Jahanshahi, Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO2 adsorption. RSC Adv. 6, 35692 (2016).CrossRef S. Khalili, B. Khoshandam, and M. Jahanshahi, Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO2 adsorption. RSC Adv. 6, 35692 (2016).CrossRef
49.
Zurück zum Zitat E.J. Jelmy, S. Ramakrishnan, M. Rangarajan, and N.K. Kothurkar, Effect of different carbon fillers and dopant acids on electrical properties of polyaniline nanocomposites. Bull. Mater. Sci. 36, 37 (2013).CrossRef E.J. Jelmy, S. Ramakrishnan, M. Rangarajan, and N.K. Kothurkar, Effect of different carbon fillers and dopant acids on electrical properties of polyaniline nanocomposites. Bull. Mater. Sci. 36, 37 (2013).CrossRef
50.
Zurück zum Zitat I.Y. Jeon, S.W. Kang, L.S. Tan and J.B. Baek,Grafting of polyaniline onto the surface of 4‐aminobenzoyl‐functionalized multiwalled carbon nanotube and its electrochemical properties. J. Polym. Sci., Part A-1: Polym. Chem. 48, 3103 (2010) I.Y. Jeon, S.W. Kang, L.S. Tan and J.B. Baek,Grafting of polyaniline onto the surface of 4‐aminobenzoyl‐functionalized multiwalled carbon nanotube and its electrochemical properties. J. Polym. Sci., Part A-1: Polym. Chem. 48, 3103 (2010)
51.
Zurück zum Zitat C. Dhand, S.K. Arya, S.P. Singh, B.P. Singh, M. Datta, and B. Malhotra, Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route. Carbon 46, 1727 (2008).CrossRef C. Dhand, S.K. Arya, S.P. Singh, B.P. Singh, M. Datta, and B. Malhotra, Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route. Carbon 46, 1727 (2008).CrossRef
52.
Zurück zum Zitat M.H. Mohamadzadeh Moghadam, S. Sabury, M.M. Gudarzi and F. Sharif,Graphene oxide‐induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. J. Polym. Sci., Part A-1: Polym. Chem. 52, 1545 (2014) M.H. Mohamadzadeh Moghadam, S. Sabury, M.M. Gudarzi and F. Sharif,Graphene oxide‐induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. J. Polym. Sci., Part A-1: Polym. Chem. 52, 1545 (2014)
53.
Zurück zum Zitat C. Menchaca-Campos, E. Pereyra-Laguna, C. García-Pérez, M. Flores-Domínguez, M.A. García-Sánchez and J. Uruchurtu-Chavarín, In Graphene Oxide-Applications and Opportunities, (IntechOpen: 2018) C. Menchaca-Campos, E. Pereyra-Laguna, C. García-Pérez, M. Flores-Domínguez, M.A. García-Sánchez and J. Uruchurtu-Chavarín, In Graphene Oxide-Applications and Opportunities, (IntechOpen: 2018)
54.
Zurück zum Zitat H.X. Qiu, X.B. Han, J. Li, F.L. Qiu and J.H. Yang, In J. Nano Res., (Trans Tech Publ: 2017), pp 212 H.X. Qiu, X.B. Han, J. Li, F.L. Qiu and J.H. Yang, In J. Nano Res., (Trans Tech Publ: 2017), pp 212
55.
Zurück zum Zitat Y. Hayatgheib, B. Ramezanzadeh, P. Kardar, and M. Mahdavian, A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite. Corros. Sci. 133, 358 (2018).CrossRef Y. Hayatgheib, B. Ramezanzadeh, P. Kardar, and M. Mahdavian, A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite. Corros. Sci. 133, 358 (2018).CrossRef
56.
Zurück zum Zitat V. Jayaweera, W.L.N.C. Liyanage, R.C.L. Desilva, S.R.D. Rosa, and I.R.M. Kottecoda, Reduced graphene oxide-SnO2-polyaniline ternary composite for high performance supercapacitors. Mater. Sci. Res. India. 8, 206 (2021).CrossRef V. Jayaweera, W.L.N.C. Liyanage, R.C.L. Desilva, S.R.D. Rosa, and I.R.M. Kottecoda, Reduced graphene oxide-SnO2-polyaniline ternary composite for high performance supercapacitors. Mater. Sci. Res. India. 8, 206 (2021).CrossRef
57.
Zurück zum Zitat M.O. Ansari, M.M. Khan, S.A. Ansari, I. Amal, J. Lee, and M.H. Cho, pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem. Eng. J. 242, 155 (2014).CrossRef M.O. Ansari, M.M. Khan, S.A. Ansari, I. Amal, J. Lee, and M.H. Cho, pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem. Eng. J. 242, 155 (2014).CrossRef
58.
Zurück zum Zitat S. Yang, S. Zhu, and R. Hong, Graphene oxide/polyaniline nanocomposites used in anticorrosive coatings for environmental protection. Coatings 10, 1215 (2020).CrossRef S. Yang, S. Zhu, and R. Hong, Graphene oxide/polyaniline nanocomposites used in anticorrosive coatings for environmental protection. Coatings 10, 1215 (2020).CrossRef
59.
Zurück zum Zitat S. Wang, Y. Zhang, H.-L. Ma, Q. Zhang, W. Xu, J. Peng, J. Li, Z.-Z. Yu, and M. Zhai, Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 55, 245 (2013).CrossRef S. Wang, Y. Zhang, H.-L. Ma, Q. Zhang, W. Xu, J. Peng, J. Li, Z.-Z. Yu, and M. Zhai, Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 55, 245 (2013).CrossRef
60.
Zurück zum Zitat X. Xie, L. Li, S. Ye, Q. Zhang, X. Chen, and X. Huang, Photocatalytic degradation of ethylene by TiO2 nanotubes/reduced graphene oxide prepared by gamma irradiation. Radiat. Phys. Chem. 165, 108371 (2019).CrossRef X. Xie, L. Li, S. Ye, Q. Zhang, X. Chen, and X. Huang, Photocatalytic degradation of ethylene by TiO2 nanotubes/reduced graphene oxide prepared by gamma irradiation. Radiat. Phys. Chem. 165, 108371 (2019).CrossRef
61.
Zurück zum Zitat S. Sharin, I.A. Rahman, A.F. Ahmad, H.M.K. Mohd, F. Mohamed, S. Radiman, M.S. Yasir, S. Sarmani, M.T.M. Ayob, and I.S.A. Bastamam, Reduction of graphene oxide to graphene by using gamma irradiation. Malaysian J. Anal. Sci. 19, 1223 (2015). S. Sharin, I.A. Rahman, A.F. Ahmad, H.M.K. Mohd, F. Mohamed, S. Radiman, M.S. Yasir, S. Sarmani, M.T.M. Ayob, and I.S.A. Bastamam, Reduction of graphene oxide to graphene by using gamma irradiation. Malaysian J. Anal. Sci. 19, 1223 (2015).
62.
Zurück zum Zitat Y. Zhang, H.-L. Ma, Q. Zhang, J. Peng, J. Li, M. Zhai, and Z.-Z. Yu, Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide. J. Mater. Chem. 22, 13064 (2012).CrossRef Y. Zhang, H.-L. Ma, Q. Zhang, J. Peng, J. Li, M. Zhai, and Z.-Z. Yu, Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide. J. Mater. Chem. 22, 13064 (2012).CrossRef
63.
Zurück zum Zitat Y. Li, Q. Zhao, Y.-G. Wang, and K. Bi, Synthesis and characterization of Bi2Te3/polyaniline composites. Mater. Sci. Semicond. Process. 14, 219 (2011).CrossRef Y. Li, Q. Zhao, Y.-G. Wang, and K. Bi, Synthesis and characterization of Bi2Te3/polyaniline composites. Mater. Sci. Semicond. Process. 14, 219 (2011).CrossRef
64.
Zurück zum Zitat Y. Wang, K. Cai, J. Yin, B. An, Y. Du, and X. Yao, In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures. J. Nanoparticle Res. 13, 533 (2011).CrossRef Y. Wang, K. Cai, J. Yin, B. An, Y. Du, and X. Yao, In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures. J. Nanoparticle Res. 13, 533 (2011).CrossRef
65.
Zurück zum Zitat M.J. Chatterjee, S.T. Ahamed, M. Mitra, C. Kulsi, A. Mondal, and D. Banerjee, Visible-light influenced photocatalytic activity of polyaniline-bismuth selenide composites for the degradation of methyl orange, rhodamine B and malachite green dyes. Appl. Surf. Sci. 470, 472 (2019).CrossRef M.J. Chatterjee, S.T. Ahamed, M. Mitra, C. Kulsi, A. Mondal, and D. Banerjee, Visible-light influenced photocatalytic activity of polyaniline-bismuth selenide composites for the degradation of methyl orange, rhodamine B and malachite green dyes. Appl. Surf. Sci. 470, 472 (2019).CrossRef
66.
Zurück zum Zitat S. Mridha and D. Basak, ZnO/polyaniline based inorganic/organic hybrid structure: Electrical and photoconductivity properties. Appl. Phys. Lett. 92, 142111 (2008).CrossRef S. Mridha and D. Basak, ZnO/polyaniline based inorganic/organic hybrid structure: Electrical and photoconductivity properties. Appl. Phys. Lett. 92, 142111 (2008).CrossRef
67.
Zurück zum Zitat D.Y. Godovsky, A.E. Varfolomeev, D.F. Zaretsky, R.N. Chandrakanthi, A. Kündig, C. Weder, and W. Caseri, Preparation of nanocomposites of polyaniline and inorganic semiconductors. J. Mater. Chem. 11, 2465 (2001).CrossRef D.Y. Godovsky, A.E. Varfolomeev, D.F. Zaretsky, R.N. Chandrakanthi, A. Kündig, C. Weder, and W. Caseri, Preparation of nanocomposites of polyaniline and inorganic semiconductors. J. Mater. Chem. 11, 2465 (2001).CrossRef
68.
Zurück zum Zitat X.B. Zhao, S.H. Hu, M.J. Zhao, and T.J. Zhu, Thermoelectric properties of Bi0.5Sb1.5Te3/polyaniline hybrids prepared by mechanical blending. Mater.Lett. 52, 147 (2002).CrossRef X.B. Zhao, S.H. Hu, M.J. Zhao, and T.J. Zhu, Thermoelectric properties of Bi0.5Sb1.5Te3/polyaniline hybrids prepared by mechanical blending. Mater.Lett. 52, 147 (2002).CrossRef
69.
Zurück zum Zitat N. Singh, M. Kulkarni, S. Lonkar, A. Viswanath, and P. Khanna, CdS/polyaniline nanocomposites: synthesis and characterization. Synth. React. Inorg. M. 37, 153 (2007).CrossRef N. Singh, M. Kulkarni, S. Lonkar, A. Viswanath, and P. Khanna, CdS/polyaniline nanocomposites: synthesis and characterization. Synth. React. Inorg. M. 37, 153 (2007).CrossRef
70.
Zurück zum Zitat C.-L. Huang, R.E. Partch, and E. Matijević, Coating of uniform inorganic particles with polymers. J. Colloid Interface Sci. 170, 275 (1995).CrossRef C.-L. Huang, R.E. Partch, and E. Matijević, Coating of uniform inorganic particles with polymers. J. Colloid Interface Sci. 170, 275 (1995).CrossRef
71.
Zurück zum Zitat M. Almasi-Kashi, M.H. Mokarian, and S. Alikhanzadeh-Arani, Improvement of the microwave absorption properties in FeNi/PANI nanocomposites fabricated with different structures. J. Alloys Compd. 742, 413 (2018).CrossRef M. Almasi-Kashi, M.H. Mokarian, and S. Alikhanzadeh-Arani, Improvement of the microwave absorption properties in FeNi/PANI nanocomposites fabricated with different structures. J. Alloys Compd. 742, 413 (2018).CrossRef
72.
Zurück zum Zitat R.S. Diggikar, S.P. Deshmukh, T.S. Thopate, and S.R. Kshirsagar, Performance of polyaniline nanofibers (PANI NFs) as PANI NFs-silver (Ag) nanocomposites (NCs) for energy storage and antibacterial applications. ACS Omega 4, 5741 (2019).CrossRef R.S. Diggikar, S.P. Deshmukh, T.S. Thopate, and S.R. Kshirsagar, Performance of polyaniline nanofibers (PANI NFs) as PANI NFs-silver (Ag) nanocomposites (NCs) for energy storage and antibacterial applications. ACS Omega 4, 5741 (2019).CrossRef
73.
Zurück zum Zitat M.S. Matseke, T.S. Munonde, K. Mallick, and H. Zheng, Pd/PANI/C nanocomposites as electrocatalysts for oxygen reduction reaction in alkaline media. Electrocatalysis 10, 436 (2019).CrossRef M.S. Matseke, T.S. Munonde, K. Mallick, and H. Zheng, Pd/PANI/C nanocomposites as electrocatalysts for oxygen reduction reaction in alkaline media. Electrocatalysis 10, 436 (2019).CrossRef
74.
Zurück zum Zitat F. Roussel, R.C.Y. King, M. Kuriakose, M. Depriester, A. Hadj-Sahraoui, C. Gors, A. Addad, and J.-F. Brun, Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth. Met. 199, 196 (2015).CrossRef F. Roussel, R.C.Y. King, M. Kuriakose, M. Depriester, A. Hadj-Sahraoui, C. Gors, A. Addad, and J.-F. Brun, Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth. Met. 199, 196 (2015).CrossRef
75.
Zurück zum Zitat Y. Chen, Q. Zhang, X. Jing, J. Han, and L. Yu, Synthesis of Cu-doped polyaniline nanocomposites (nano Cu@ PANI) via the H2O2-promoted oxidative polymerization of aniline with copper salt. Mater. Lett. 242, 170 (2019).CrossRef Y. Chen, Q. Zhang, X. Jing, J. Han, and L. Yu, Synthesis of Cu-doped polyaniline nanocomposites (nano Cu@ PANI) via the H2O2-promoted oxidative polymerization of aniline with copper salt. Mater. Lett. 242, 170 (2019).CrossRef
76.
Zurück zum Zitat T. Wang, D. Wu, Y. Wang, T. Huang, G. Histand, T. Wang, and H. Zeng, One-step solvothermal fabrication of Cu@ PANI core–shell nanospheres for hydrogen evolution. Nanoscale 10, 22055 (2018).CrossRef T. Wang, D. Wu, Y. Wang, T. Huang, G. Histand, T. Wang, and H. Zeng, One-step solvothermal fabrication of Cu@ PANI core–shell nanospheres for hydrogen evolution. Nanoscale 10, 22055 (2018).CrossRef
77.
Zurück zum Zitat R.H. Alshammari, U.C. Rajesh, D.G. Morgan, and J.M. Zaleski, Au-Cu@ PANI alloy core shells for aerobic fibrin degradation under visible light exposure. ACS Appl. Bio. Mater. 3, 7631 (2020).CrossRef R.H. Alshammari, U.C. Rajesh, D.G. Morgan, and J.M. Zaleski, Au-Cu@ PANI alloy core shells for aerobic fibrin degradation under visible light exposure. ACS Appl. Bio. Mater. 3, 7631 (2020).CrossRef
78.
Zurück zum Zitat L. Singh and V. Singh, Synthesis of Au@ PANI nanocomposites by complexation method and their application as label-free chemo probe for detection of mercury ions. Bull. Mater. Sci. 43, 1 (2020).CrossRef L. Singh and V. Singh, Synthesis of Au@ PANI nanocomposites by complexation method and their application as label-free chemo probe for detection of mercury ions. Bull. Mater. Sci. 43, 1 (2020).CrossRef
79.
Zurück zum Zitat H. Lin, L. Song, Y. Huang, Q. Cheng, Y. Yang, Z. Guo, F. Su, and T. Chen, Macroscopic Au@ PANI core/shell nanoparticle superlattice monolayer film with dual-responsive plasmonic switches. ACS Appl. Mater. Interfaces 12, 11296 (2020).CrossRef H. Lin, L. Song, Y. Huang, Q. Cheng, Y. Yang, Z. Guo, F. Su, and T. Chen, Macroscopic Au@ PANI core/shell nanoparticle superlattice monolayer film with dual-responsive plasmonic switches. ACS Appl. Mater. Interfaces 12, 11296 (2020).CrossRef
80.
Zurück zum Zitat J. Belloni, M. Mostafavi, T. Douki and M. Spotheim-Maurizot,Radiation chemistry from basics to applications in material and life sciences. (2008) J. Belloni, M. Mostafavi, T. Douki and M. Spotheim-Maurizot,Radiation chemistry from basics to applications in material and life sciences. (2008)
81.
Zurück zum Zitat E. Plesset, Nuclear Excitations Resulting from Radioactive Decay. Phys. Rev. 62, 181 (1942).CrossRef E. Plesset, Nuclear Excitations Resulting from Radioactive Decay. Phys. Rev. 62, 181 (1942).CrossRef
82.
Zurück zum Zitat N. Singh, Radioisotopes: Applications in physical sciences (London: InTech, 2011).CrossRef N. Singh, Radioisotopes: Applications in physical sciences (London: InTech, 2011).CrossRef
83.
Zurück zum Zitat M. Miladjenovic, Radioisotope and Radiation Physics: An Introduction (Netherland: Elsevier, 2012). M. Miladjenovic, Radioisotope and Radiation Physics: An Introduction (Netherland: Elsevier, 2012).
84.
Zurück zum Zitat J.F. Wishart and B.M. Rao, Recent trends in radiation chemistry (Singapore: World Scientific, 2010).CrossRef J.F. Wishart and B.M. Rao, Recent trends in radiation chemistry (Singapore: World Scientific, 2010).CrossRef
85.
Zurück zum Zitat S.P. Pappas, Radiation curing: science and technology (Berlin: Springer Science & Business Media, 2013). S.P. Pappas, Radiation curing: science and technology (Berlin: Springer Science & Business Media, 2013).
86.
Zurück zum Zitat A. Yan, X. Zeng and J. Zheng, Gamma ray radiation modifications on polymer material, IAEA 2000. A. Yan, X. Zeng and J. Zheng, Gamma ray radiation modifications on polymer material, IAEA 2000.
87.
Zurück zum Zitat A. Azura, and A. Thomas, Elastomers and Components (Netherland: Elsevier, 2006), p. p27.CrossRef A. Azura, and A. Thomas, Elastomers and Components (Netherland: Elsevier, 2006), p. p27.CrossRef
88.
Zurück zum Zitat N.K. Zaman R. Rohani and A.W. Mohamad, Surface modification of polyaniline onto PVDF membrane via radiation induced grafting. J. Teknol. 77 (2015). N.K. Zaman R. Rohani and A.W. Mohamad, Surface modification of polyaniline onto PVDF membrane via radiation induced grafting. J. Teknol. 77 (2015).
89.
Zurück zum Zitat R.J. Zaldivar, H.I. Kim, and G.L. Ferrelli, Effect of gamma radiation on the stability of UV replicated composite mirrors. Opt. Eng. 57, 047102 (2018).CrossRef R.J. Zaldivar, H.I. Kim, and G.L. Ferrelli, Effect of gamma radiation on the stability of UV replicated composite mirrors. Opt. Eng. 57, 047102 (2018).CrossRef
90.
Zurück zum Zitat M.M. Ghobashy, S.A. Alkhursani, and M. Madani, Radiation-induced nucleation and pH-controlled nanostructure shape of polyaniline dispersed in DMF. Polym. Bull. 75, 5477 (2018).CrossRef M.M. Ghobashy, S.A. Alkhursani, and M. Madani, Radiation-induced nucleation and pH-controlled nanostructure shape of polyaniline dispersed in DMF. Polym. Bull. 75, 5477 (2018).CrossRef
91.
Zurück zum Zitat H. Saleh, Z. Ali, and T. Afify, Synthesis of Ag/PANI core shell nanocomposites using ionizing radiation. Adv. Polym. Technol. 35, 335 (2016).CrossRef H. Saleh, Z. Ali, and T. Afify, Synthesis of Ag/PANI core shell nanocomposites using ionizing radiation. Adv. Polym. Technol. 35, 335 (2016).CrossRef
92.
Zurück zum Zitat M.R. Karim, K.T. Lim, C.J. Lee, M.T.I. Bhuiyan, H.J. Kim, L.S. Park and M.S. Lee,Synthesis of core‐shell silver–polyaniline nanocomposites by gamma radiolysis method. J. Polym. Sci., Part A-1: Polym. Chem. 45, 5741 (2007). M.R. Karim, K.T. Lim, C.J. Lee, M.T.I. Bhuiyan, H.J. Kim, L.S. Park and M.S. Lee,Synthesis of core‐shell silver–polyaniline nanocomposites by gamma radiolysis method. J. Polym. Sci., Part A-1: Polym. Chem. 45, 5741 (2007).
93.
Zurück zum Zitat A.M. Meftah, E. Gharibshahi, N. Soltani, W. Yunus, and E. Saion, Structural, optical and electrical properties of PVA/PANI/Nickel nanocomposites synthesized by gamma radiolytic method. Polymers 6, 2435 (2014).CrossRef A.M. Meftah, E. Gharibshahi, N. Soltani, W. Yunus, and E. Saion, Structural, optical and electrical properties of PVA/PANI/Nickel nanocomposites synthesized by gamma radiolytic method. Polymers 6, 2435 (2014).CrossRef
94.
Zurück zum Zitat D. Das, P. Choudhury, L. Bortahkur, B. Gogoi, A.K. Buragohain, and S.K. Dolui, Synthesis and characterization of SiO2/polyaniline/Ag core–shell particles and studies of their electrical and hemolytic properties: multifunctional core–shell particles. RSC Adv. 5, 2360 (2015).CrossRef D. Das, P. Choudhury, L. Bortahkur, B. Gogoi, A.K. Buragohain, and S.K. Dolui, Synthesis and characterization of SiO2/polyaniline/Ag core–shell particles and studies of their electrical and hemolytic properties: multifunctional core–shell particles. RSC Adv. 5, 2360 (2015).CrossRef
95.
Zurück zum Zitat H.-J. Kim, S.H. Park, and H.-J. Park, Synthesis of a new electrically conducting nanosized Ag–polyaniline–silica complex using γ-radiolysis and its biosensing application. Radiat. Phys. Chem. 79, 894 (2010).CrossRef H.-J. Kim, S.H. Park, and H.-J. Park, Synthesis of a new electrically conducting nanosized Ag–polyaniline–silica complex using γ-radiolysis and its biosensing application. Radiat. Phys. Chem. 79, 894 (2010).CrossRef
96.
Zurück zum Zitat M.A. Maksoud, M.M. Ghobashy, G.S. El-Sayyad, A.M. El-Khawaga, M.A. Elsayed and A. Ashour,Gamma irradiation-assisted synthesis of PANi/Ag/MoS2/LiCo0.5Fe2O4 nanocomposite: Efficiency evaluation of photocatalytic bisphenol a degradation and microbial decontamination from wastewater. Opt. Mater. 119, 111396 (2021) M.A. Maksoud, M.M. Ghobashy, G.S. El-Sayyad, A.M. El-Khawaga, M.A. Elsayed and A. Ashour,Gamma irradiation-assisted synthesis of PANi/Ag/MoS2/LiCo0.5Fe2O4 nanocomposite: Efficiency evaluation of photocatalytic bisphenol a degradation and microbial decontamination from wastewater. Opt. Mater. 119, 111396 (2021)
97.
Zurück zum Zitat T. Afify, O. Ghazy, H. Saleh, and Z. Ali, Efficient in situ synthetic routes of polyaniline/poly (vinyl alcohol)/TiO2 nanocomposites using gamma irradiation. J. Mol. Struct. 1153, 128 (2018).CrossRef T. Afify, O. Ghazy, H. Saleh, and Z. Ali, Efficient in situ synthetic routes of polyaniline/poly (vinyl alcohol)/TiO2 nanocomposites using gamma irradiation. J. Mol. Struct. 1153, 128 (2018).CrossRef
98.
Zurück zum Zitat M.R. Karim, J.H. Yeum, M.S. Lee, and K.T. Lim, Preparation of conducting polyaniline/TiO2 composite submicron-rods by the γ-radiolysis oxidative polymerization method. React. Funct. Polym. 68, 1371 (2008).CrossRef M.R. Karim, J.H. Yeum, M.S. Lee, and K.T. Lim, Preparation of conducting polyaniline/TiO2 composite submicron-rods by the γ-radiolysis oxidative polymerization method. React. Funct. Polym. 68, 1371 (2008).CrossRef
99.
Zurück zum Zitat P.P. Katre and A.A. Athawale, Au-Polyaniline Nanocomposite Synthesized Using γ-Ray Induced Au Nanoparticles. Synth. React. Inorg. M. 37, 363 (2007).CrossRef P.P. Katre and A.A. Athawale, Au-Polyaniline Nanocomposite Synthesized Using γ-Ray Induced Au Nanoparticles. Synth. React. Inorg. M. 37, 363 (2007).CrossRef
100.
Zurück zum Zitat Z.-H. Huang, L. Shi, Q.-R. Zhu, J.-T. Zou, and T. Chen, Fabrication of Polyaniline/Silver Nanocomposite Under Gamma-ray Irradiation. Chin. J. Chem. Phys. 23, 701 (2010).CrossRef Z.-H. Huang, L. Shi, Q.-R. Zhu, J.-T. Zou, and T. Chen, Fabrication of Polyaniline/Silver Nanocomposite Under Gamma-ray Irradiation. Chin. J. Chem. Phys. 23, 701 (2010).CrossRef
101.
Zurück zum Zitat K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A.M. Showkat and Y.C. Nho,Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)‐nanoparticles‐embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci., Part A-1: Polym. Chem. 44, 3355 (2006) K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A.M. Showkat and Y.C. Nho,Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)‐nanoparticles‐embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci., Part A-1: Polym. Chem. 44, 3355 (2006)
102.
Zurück zum Zitat Y.-O. Kang, S.-H. Choi, A. Gopalan, K.-P. Lee, H.-D. Kang and Y.S. Song,Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. J. Non·Cryst. Solids 352, 463 (2006). Y.-O. Kang, S.-H. Choi, A. Gopalan, K.-P. Lee, H.-D. Kang and Y.S. Song,Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. J. Non·Cryst. Solids 352, 463 (2006).
103.
Zurück zum Zitat S.S. Ashraf, M. Frounchi, and S. Dadbin, Gamma irradiated electro-conductive polylactic acid/polyaniline nanofibers. Synth. Met. 259, 116204 (2020).CrossRef S.S. Ashraf, M. Frounchi, and S. Dadbin, Gamma irradiated electro-conductive polylactic acid/polyaniline nanofibers. Synth. Met. 259, 116204 (2020).CrossRef
104.
Zurück zum Zitat C. Uzun, P. Ilgın, and O. Güven, Radiation induced in-situ generation of conductivity in the blends of polyaniline-base with chlorinated-polyisoprene. Radiat. Phys. Chem. 79, 343 (2010).CrossRef C. Uzun, P. Ilgın, and O. Güven, Radiation induced in-situ generation of conductivity in the blends of polyaniline-base with chlorinated-polyisoprene. Radiat. Phys. Chem. 79, 343 (2010).CrossRef
105.
Zurück zum Zitat K. Sharma, B. Kaith, V. Kumar, S. Kalia, V. Kumar, and H. Swart, Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polym. Degrad. Stab. 107, 166 (2014).CrossRef K. Sharma, B. Kaith, V. Kumar, S. Kalia, V. Kumar, and H. Swart, Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polym. Degrad. Stab. 107, 166 (2014).CrossRef
106.
Zurück zum Zitat P. Hamdi-Mohammadabad, T. Tohidi, R. Talebzadeh, R. Mohammad-Rezaei, and S. Rahmatallahpur, Preparation and characterization of gamma irradiated ZnO/PANI hybrid films. J. Radioanal. Nucl. Chem. 330, 785 (2021).CrossRef P. Hamdi-Mohammadabad, T. Tohidi, R. Talebzadeh, R. Mohammad-Rezaei, and S. Rahmatallahpur, Preparation and characterization of gamma irradiated ZnO/PANI hybrid films. J. Radioanal. Nucl. Chem. 330, 785 (2021).CrossRef
107.
Zurück zum Zitat S. Ramakrishnan and S. Rajakarthihan, Antimicrobial study on gamma-irradiated polyaniline–aluminum oxide (PANI–Al2O3) nanoparticles. Int. Nano Lett. 10, 97 (2020).CrossRef S. Ramakrishnan and S. Rajakarthihan, Antimicrobial study on gamma-irradiated polyaniline–aluminum oxide (PANI–Al2O3) nanoparticles. Int. Nano Lett. 10, 97 (2020).CrossRef
108.
Zurück zum Zitat O. Norfazlinayati, Z. Talib, H.M. Hamzah, N.N. Salleh, and A. Shaari, Optical characterization of PANI/functionalized-MWCNTs/PVA nanocomposites induced by gamma irradiation. Synth. Met. 276, 116755 (2021).CrossRef O. Norfazlinayati, Z. Talib, H.M. Hamzah, N.N. Salleh, and A. Shaari, Optical characterization of PANI/functionalized-MWCNTs/PVA nanocomposites induced by gamma irradiation. Synth. Met. 276, 116755 (2021).CrossRef
109.
Zurück zum Zitat H. Bodugöz and O. Güven, Radiation induced dehydrochlorination as an in-situ doping technique for enhancement of the conductivity of polyaniline blends. Nucl. Instrum. Methods Phys. Res. Sect. B 236, 153 (2005).CrossRef H. Bodugöz and O. Güven, Radiation induced dehydrochlorination as an in-situ doping technique for enhancement of the conductivity of polyaniline blends. Nucl. Instrum. Methods Phys. Res. Sect. B 236, 153 (2005).CrossRef
110.
Zurück zum Zitat N.M. Al-Hada, A.M. Al-Ghaili, H. Kasim, M.A. Saleh, E. Saion, J. Liu, and W. Jihua, Synthesis and characterization of conducting polyaniline based on ANI-PVA-MgCl2 composites using gamma radiation technique. IEEE Access 8, 139479 (2020).CrossRef N.M. Al-Hada, A.M. Al-Ghaili, H. Kasim, M.A. Saleh, E. Saion, J. Liu, and W. Jihua, Synthesis and characterization of conducting polyaniline based on ANI-PVA-MgCl2 composites using gamma radiation technique. IEEE Access 8, 139479 (2020).CrossRef
111.
Zurück zum Zitat A. Alyan, S. Abdel-Samad, A. Massoud, and S. Waly, Characterization and thermal conductivity investigation of Copper-Polyaniline Nano composite synthesized by gamma radiolysis method. Heat Mass Transf. 55, 2409 (2019).CrossRef A. Alyan, S. Abdel-Samad, A. Massoud, and S. Waly, Characterization and thermal conductivity investigation of Copper-Polyaniline Nano composite synthesized by gamma radiolysis method. Heat Mass Transf. 55, 2409 (2019).CrossRef
112.
Zurück zum Zitat M. El-Arnaouty, M. Eid, M. Salah, E.-S. Soliman, and E.-S.A. Hegazy, Synthesis of poly (aniline/glycidyl methacrylate)-TiO2 nanocomposites via gamma irradiation and their electro-responsive characteristic. J. Inorg. Organomet. Polym. Mater. 27, 1482 (2017).CrossRef M. El-Arnaouty, M. Eid, M. Salah, E.-S. Soliman, and E.-S.A. Hegazy, Synthesis of poly (aniline/glycidyl methacrylate)-TiO2 nanocomposites via gamma irradiation and their electro-responsive characteristic. J. Inorg. Organomet. Polym. Mater. 27, 1482 (2017).CrossRef
113.
Zurück zum Zitat E. Khozemy, Radiation synthesis of gas sensor based on polyaniline nanoflake-poly vinyl alcohol) film for four hazardous gases (NH3, CO2, H2S and phenol). Arab J. Nucl. Sci. Appl. 53, 210 (2020). E. Khozemy, Radiation synthesis of gas sensor based on polyaniline nanoflake-poly vinyl alcohol) film for four hazardous gases (NH3, CO2, H2S and phenol). Arab J. Nucl. Sci. Appl. 53, 210 (2020).
114.
Zurück zum Zitat M.F. Abou Taleb, Adsorption and photocatalytic degradation of 2-CP in wastewater onto CS/CoFe2O4 nanocomposite synthesized using gamma radiation. Carbohydr. Polym. 114, 65 (2014) M.F. Abou Taleb, Adsorption and photocatalytic degradation of 2-CP in wastewater onto CS/CoFe2O4 nanocomposite synthesized using gamma radiation. Carbohydr. Polym. 114, 65 (2014)
115.
Zurück zum Zitat T.J. Rivers, T.W. Hudson, and C.E. Schmidt, Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv. Funct. Mater. 12, 33 (2002).CrossRef T.J. Rivers, T.W. Hudson, and C.E. Schmidt, Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv. Funct. Mater. 12, 33 (2002).CrossRef
116.
Zurück zum Zitat C.E. Schmidt, V.R. Shastri, J.P. Vacanti, and R. Langer, Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. 94, 8948 (1997).CrossRef C.E. Schmidt, V.R. Shastri, J.P. Vacanti, and R. Langer, Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. 94, 8948 (1997).CrossRef
117.
Zurück zum Zitat B. Garner, A. Hodgson, G. Wallace and P.A. Underwood,Human endothelial cell a. J. Mater. Sci.: Mater. Med. 10, 19 (1999) B. Garner, A. Hodgson, G. Wallace and P.A. Underwood,Human endothelial cell a. J. Mater. Sci.: Mater. Med. 10, 19 (1999)
118.
Zurück zum Zitat M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, and P.A. Kilmartin, Conducting polymers as free radical scavengers. Synth. Met. 140, 225 (2004).CrossRef M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, and P.A. Kilmartin, Conducting polymers as free radical scavengers. Synth. Met. 140, 225 (2004).CrossRef
119.
Zurück zum Zitat M. Ismail, M. Abd El Ghaffar, K. Shaffei, and N. Mohamed, Some novel polyamines as antioxidants for SBR vulcanizates. Polym. Degrad. Stab. 63, 377 (1999).CrossRef M. Ismail, M. Abd El Ghaffar, K. Shaffei, and N. Mohamed, Some novel polyamines as antioxidants for SBR vulcanizates. Polym. Degrad. Stab. 63, 377 (1999).CrossRef
120.
Zurück zum Zitat M. Ismail, M. Ibrahim and M. Abd El-Ghaffar,Polyaniline as an antioxidant and antirad in SBR vulcanizates. Polymer Degradation and Stability 62, 337 (1998) M. Ismail, M. Ibrahim and M. Abd El-Ghaffar,Polyaniline as an antioxidant and antirad in SBR vulcanizates. Polymer Degradation and Stability 62, 337 (1998)
121.
Zurück zum Zitat J. Wang, L.H. Zhu, J. Li, and H.Q. Tang, Antioxidant activity of polyaniline nanofibers. Chin. Chem. Lett. 18, 1005 (2007).CrossRef J. Wang, L.H. Zhu, J. Li, and H.Q. Tang, Antioxidant activity of polyaniline nanofibers. Chin. Chem. Lett. 18, 1005 (2007).CrossRef
122.
Zurück zum Zitat S. Banerjee, J.P. Saikia, A. Kumar, and B. Konwar, Antioxidant activity and haemolysis prevention efficiency of polyaniline nanofibers. Nanotechnology 21, 045101 (2009).CrossRef S. Banerjee, J.P. Saikia, A. Kumar, and B. Konwar, Antioxidant activity and haemolysis prevention efficiency of polyaniline nanofibers. Nanotechnology 21, 045101 (2009).CrossRef
123.
Zurück zum Zitat N. Shi, X. Guo, H. Jing, J. Gong, C. Sun, and K. Yang, Antibacterial effect of the conducting polyaniline. J. Mater. Sci. Tech. 22, 289 (2006). N. Shi, X. Guo, H. Jing, J. Gong, C. Sun, and K. Yang, Antibacterial effect of the conducting polyaniline. J. Mater. Sci. Tech. 22, 289 (2006).
124.
Zurück zum Zitat M.R. Gizdavic-Nikolaidis, J.R. Bennett, S. Swift, A.J. Easteal, and M. Ambrose, Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomater. 7, 4204 (2011).CrossRef M.R. Gizdavic-Nikolaidis, J.R. Bennett, S. Swift, A.J. Easteal, and M. Ambrose, Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomater. 7, 4204 (2011).CrossRef
125.
Zurück zum Zitat K.P. Jotiram, R. Prasad, V.S. Jakka, R. Aparna and A. Phani,Antibacterial activity of nanostructured polyaniline combined with mupirocin. Nano Biomed. Eng. 4 (2012) K.P. Jotiram, R. Prasad, V.S. Jakka, R. Aparna and A. Phani,Antibacterial activity of nanostructured polyaniline combined with mupirocin. Nano Biomed. Eng. 4 (2012)
126.
Zurück zum Zitat Z. Kucekova, V. Kasparkova, P. Humpolicek, P. Sevcikova, and J. Stejskal, Antibacterial properties of polyaniline-silver films. Chem. Pap. 67, 1103 (2013).CrossRef Z. Kucekova, V. Kasparkova, P. Humpolicek, P. Sevcikova, and J. Stejskal, Antibacterial properties of polyaniline-silver films. Chem. Pap. 67, 1103 (2013).CrossRef
127.
Zurück zum Zitat C. Dhivya, S.a.A. Vandarkuzhali and N. Radha,Antimicrobial activities of nanostructured polyanilines doped with aromatic nitro compounds. Arab J. Chem. 12, 3785 (2019) C. Dhivya, S.a.A. Vandarkuzhali and N. Radha,Antimicrobial activities of nanostructured polyanilines doped with aromatic nitro compounds. Arab J. Chem. 12, 3785 (2019)
128.
Zurück zum Zitat A. Kukla, Y.M. Shirshov, and S. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B Chem. 37, 135 (1996).CrossRef A. Kukla, Y.M. Shirshov, and S. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B Chem. 37, 135 (1996).CrossRef
129.
Zurück zum Zitat G. Khuspe, S. Navale, M. Chougule, and V. Patil, Ammonia gas sensing properties of CSA doped PANi-SnO2 nanohybrid thin films. Synth. Met. 185, 1 (2013). G. Khuspe, S. Navale, M. Chougule, and V. Patil, Ammonia gas sensing properties of CSA doped PANi-SnO2 nanohybrid thin films. Synth. Met. 185, 1 (2013).
130.
Zurück zum Zitat X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E.S.-W. Kong, H. Wei, and Y. Zhang, Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22, 22488 (2012).CrossRef X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E.S.-W. Kong, H. Wei, and Y. Zhang, Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22, 22488 (2012).CrossRef
131.
Zurück zum Zitat A.M. Seif, A. Nikfarjam, and H. Hajghassem, UV enhanced ammonia gas sensing properties of PANI/TiO2 core-shell nanofibers. Sens. Actuators B Chem. 298, 126906 (2019).CrossRef A.M. Seif, A. Nikfarjam, and H. Hajghassem, UV enhanced ammonia gas sensing properties of PANI/TiO2 core-shell nanofibers. Sens. Actuators B Chem. 298, 126906 (2019).CrossRef
132.
Zurück zum Zitat Q. Nie, Z. Pang, D. Li, H. Zhou, F. Huang, Y. Cai, and Q. Wei, Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surf. A Physicochem. Eng. Asp. 537, 532 (2018).CrossRef Q. Nie, Z. Pang, D. Li, H. Zhou, F. Huang, Y. Cai, and Q. Wei, Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surf. A Physicochem. Eng. Asp. 537, 532 (2018).CrossRef
133.
Zurück zum Zitat R.R. Borude, N. Deshpande, S. Chakane, and J. Pant, Sn-PANI Synthesis and its Application as Ammonia Gas Sensor. J. At. Mol. Condens. Nano Phys. 3, 73 (2016).CrossRef R.R. Borude, N. Deshpande, S. Chakane, and J. Pant, Sn-PANI Synthesis and its Application as Ammonia Gas Sensor. J. At. Mol. Condens. Nano Phys. 3, 73 (2016).CrossRef
134.
Zurück zum Zitat D.N. Huyen, N.T. Tung, N.D. Thien, and L.H. Thanh, Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors 11, 1924 (2011).CrossRef D.N. Huyen, N.T. Tung, N.D. Thien, and L.H. Thanh, Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors 11, 1924 (2011).CrossRef
135.
Zurück zum Zitat Z. Pang, J. Yu, D. Li, Q. Nie, J. Zhang and Q. Wei,Free-standing TiO2–SiO2/PANI composite nanofibers for ammonia sensors. J. Mater. Sci.: Mater. Electron. 29, 3576 (2018) Z. Pang, J. Yu, D. Li, Q. Nie, J. Zhang and Q. Wei,Free-standing TiO2–SiO2/PANI composite nanofibers for ammonia sensors. J. Mater. Sci.: Mater. Electron. 29, 3576 (2018)
136.
Zurück zum Zitat J. Bhadra, A. Popelka, A. Abdulkareem, Z. Ahmad, F. Touati, and N. Al-Thani, Fabrication of polyaniline–graphene/polystyrene nanocomposites for flexible gas sensors. RSC Adv. 9, 12496 (2019).CrossRef J. Bhadra, A. Popelka, A. Abdulkareem, Z. Ahmad, F. Touati, and N. Al-Thani, Fabrication of polyaniline–graphene/polystyrene nanocomposites for flexible gas sensors. RSC Adv. 9, 12496 (2019).CrossRef
137.
Zurück zum Zitat Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature. Beilstein J. Nanotechnol. 7, 1312 (2016).CrossRef Q. Nie, Z. Pang, H. Lu, Y. Cai, and Q. Wei, Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature. Beilstein J. Nanotechnol. 7, 1312 (2016).CrossRef
138.
Zurück zum Zitat D.M. Rowe, CRC Handbook of Thermoelectrics (United States: CRC Press, 2018).CrossRef D.M. Rowe, CRC Handbook of Thermoelectrics (United States: CRC Press, 2018).CrossRef
139.
Zurück zum Zitat N. Dubey and M. Leclerc, Conducting polymers: efficient thermoelectric materials. J. Polym. Sci. B Polym. Phys. 49, 467 (2011).CrossRef N. Dubey and M. Leclerc, Conducting polymers: efficient thermoelectric materials. J. Polym. Sci. B Polym. Phys. 49, 467 (2011).CrossRef
140.
Zurück zum Zitat B. Abad, I. Alda, P. Díaz-Chao, H. Kawakami, A. Almarza, D. Amantia, D. Gutierrez, L. Aubouy, and M. Martín-González, Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J. Mater. Chem. A 1, 10450 (2013).CrossRef B. Abad, I. Alda, P. Díaz-Chao, H. Kawakami, A. Almarza, D. Amantia, D. Gutierrez, L. Aubouy, and M. Martín-González, Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J. Mater. Chem. A 1, 10450 (2013).CrossRef
141.
Zurück zum Zitat H. Wang, L. Yin, X. Pu, and C. Yu, Facile charge carrier adjustment for improving thermopower of doped polyaniline. Polymer 54, 1136 (2013).CrossRef H. Wang, L. Yin, X. Pu, and C. Yu, Facile charge carrier adjustment for improving thermopower of doped polyaniline. Polymer 54, 1136 (2013).CrossRef
142.
Zurück zum Zitat M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin, and T. Koga, Low-dimensional thermoelectric materials. Phys. Solid State 41, 679 (1999).CrossRef M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin, and T. Koga, Low-dimensional thermoelectric materials. Phys. Solid State 41, 679 (1999).CrossRef
143.
Zurück zum Zitat S.-W. Phang, T. Hino, M. Abdullah, and N. Kuramoto, Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials. Mater. Chem. Phys. 104, 327 (2007).CrossRef S.-W. Phang, T. Hino, M. Abdullah, and N. Kuramoto, Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials. Mater. Chem. Phys. 104, 327 (2007).CrossRef
144.
Zurück zum Zitat G. Zuo, Z. Li, E. Wang, and M. Kemerink, High Seebeck coefficient and power factor in n-type organic thermoelectrics. Adv. Electron. Mater. 4, 1700501 (2018).CrossRef G. Zuo, Z. Li, E. Wang, and M. Kemerink, High Seebeck coefficient and power factor in n-type organic thermoelectrics. Adv. Electron. Mater. 4, 1700501 (2018).CrossRef
145.
Zurück zum Zitat M.R. Safenaz and M. Sheikha,Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv. Mater. Phys. Chem. 2012 (2012) M.R. Safenaz and M. Sheikha,Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv. Mater. Phys. Chem. 2012 (2012)
146.
Zurück zum Zitat C. Meng, C. Liu, and S. Fan, A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv. Mater. 22, 535 (2010).CrossRef C. Meng, C. Liu, and S. Fan, A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv. Mater. 22, 535 (2010).CrossRef
147.
Zurück zum Zitat V. Shalini, M. Navaneethan, S. Harish, J. Archana, S. Ponnusamy, H. Ikeda, and Y. Hayakawa, Design and fabrication of PANI/GO nanocomposite for enhanced room-temperature thermoelectric application. Appl. Surf. Sci. 493, 1350 (2019).CrossRef V. Shalini, M. Navaneethan, S. Harish, J. Archana, S. Ponnusamy, H. Ikeda, and Y. Hayakawa, Design and fabrication of PANI/GO nanocomposite for enhanced room-temperature thermoelectric application. Appl. Surf. Sci. 493, 1350 (2019).CrossRef
148.
Zurück zum Zitat J. Zhao, Y. Li, and M. Wang, Fabrication of robust transparent hydrogel with stretchable, self-healing, easily recyclable and adhesive properties and its application. Mater. Res. Bull. 112, 292 (2019).CrossRef J. Zhao, Y. Li, and M. Wang, Fabrication of robust transparent hydrogel with stretchable, self-healing, easily recyclable and adhesive properties and its application. Mater. Res. Bull. 112, 292 (2019).CrossRef
149.
Zurück zum Zitat D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, and G. Yu, Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540 (2013).CrossRef D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, and G. Yu, Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540 (2013).CrossRef
150.
Zurück zum Zitat Y.-Y. Horng, Y.-K. Hsu, A. Ganguly, C.-C. Chen, L.-C. Chen, and K.-H. Chen, Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection. Electrochem. Commun. 11, 850 (2009).CrossRef Y.-Y. Horng, Y.-K. Hsu, A. Ganguly, C.-C. Chen, L.-C. Chen, and K.-H. Chen, Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection. Electrochem. Commun. 11, 850 (2009).CrossRef
151.
Zurück zum Zitat L. Xu, Y. Zhu, X. Yang, and C. Li, Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Mater. Sci. Eng. C 29, 1306 (2009).CrossRef L. Xu, Y. Zhu, X. Yang, and C. Li, Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Mater. Sci. Eng. C 29, 1306 (2009).CrossRef
152.
Zurück zum Zitat L. Zhao and Z. Ma, Facile synthesis of polyaniline-polythionine redox hydrogel: Conductive, antifouling and enzyme-linked material for ultrasensitive label-free amperometric immunosensor toward carcinoma antigen-125. Anal. Chim. Acta 997, 60 (2018).CrossRef L. Zhao and Z. Ma, Facile synthesis of polyaniline-polythionine redox hydrogel: Conductive, antifouling and enzyme-linked material for ultrasensitive label-free amperometric immunosensor toward carcinoma antigen-125. Anal. Chim. Acta 997, 60 (2018).CrossRef
153.
Zurück zum Zitat B. Taşdelen, Conducting hydrogels based on semi-interpenetrating networks of polyaniline in poly (acrylamide-co-itaconic acid) matrix: synthesis and characterization. Polym. Adv. Technol. 28, 1865 (2017).CrossRef B. Taşdelen, Conducting hydrogels based on semi-interpenetrating networks of polyaniline in poly (acrylamide-co-itaconic acid) matrix: synthesis and characterization. Polym. Adv. Technol. 28, 1865 (2017).CrossRef
154.
Zurück zum Zitat L.-M. Low, S. Seetharaman, K.-Q. He, and M.J. Madou, Microactuators toward microvalves for responsive controlled drug delivery. Sens. Actuators B Chem. 67, 149 (2000).CrossRef L.-M. Low, S. Seetharaman, K.-Q. He, and M.J. Madou, Microactuators toward microvalves for responsive controlled drug delivery. Sens. Actuators B Chem. 67, 149 (2000).CrossRef
155.
Zurück zum Zitat M.G. Fontana, and N.D. Greene, Corrosion engineering (UK: McGraw-hill, 2018). M.G. Fontana, and N.D. Greene, Corrosion engineering (UK: McGraw-hill, 2018).
156.
Zurück zum Zitat P.P. Deshpande and D. Sazou, Corrosion protection of metals by intrinsically conducting polymers (United States: CRC Press, 2016).CrossRef P.P. Deshpande and D. Sazou, Corrosion protection of metals by intrinsically conducting polymers (United States: CRC Press, 2016).CrossRef
157.
Zurück zum Zitat V. Malau and W. Hakiki, Key Engineering Materials (Switzerland: Trans Tech Publ, 2021), p. 115. V. Malau and W. Hakiki, Key Engineering Materials (Switzerland: Trans Tech Publ, 2021), p. 115.
158.
Zurück zum Zitat D.W. Deberry, Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J. Electrochem. Soc. 132, 1022 (1985).CrossRef D.W. Deberry, Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J. Electrochem. Soc. 132, 1022 (1985).CrossRef
159.
Zurück zum Zitat X. Sheng, W. Cai, L. Zhong, D. Xie, and X. Zhang, Synthesis of functionalized graphene/polyaniline nanocomposites with effective synergistic reinforcement on anticorrosion. Ind. Eng. Chem. Res. 55, 8576 (2016).CrossRef X. Sheng, W. Cai, L. Zhong, D. Xie, and X. Zhang, Synthesis of functionalized graphene/polyaniline nanocomposites with effective synergistic reinforcement on anticorrosion. Ind. Eng. Chem. Res. 55, 8576 (2016).CrossRef
160.
Zurück zum Zitat V.A. Mooss, A.A. Bhopale, P.P. Deshpande, and A.A. Athawale, Graphene oxide-modified polyaniline pigment for epoxy based anti-corrosion coatings. Chem. Pap. 71, 1515 (2017).CrossRef V.A. Mooss, A.A. Bhopale, P.P. Deshpande, and A.A. Athawale, Graphene oxide-modified polyaniline pigment for epoxy based anti-corrosion coatings. Chem. Pap. 71, 1515 (2017).CrossRef
161.
Zurück zum Zitat A. Olad, M. Barati, and S. Behboudi, Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron. Prog. Org. Coat. 74, 221 (2012).CrossRef A. Olad, M. Barati, and S. Behboudi, Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron. Prog. Org. Coat. 74, 221 (2012).CrossRef
162.
Zurück zum Zitat A. Olad and A. Rashidzadeh, Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites. Prog. Org. Coat. 62, 293 (2008).CrossRef A. Olad and A. Rashidzadeh, Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites. Prog. Org. Coat. 62, 293 (2008).CrossRef
163.
Zurück zum Zitat K. Shah and J. Iroh, Adhesion of electrochemically formed conducting polymer coatings on Al-2024. Surf. Eng. 20, 53 (2004).CrossRef K. Shah and J. Iroh, Adhesion of electrochemically formed conducting polymer coatings on Al-2024. Surf. Eng. 20, 53 (2004).CrossRef
164.
Zurück zum Zitat S. Shi, Y. Zhao, Z. Zhang, and L. Yu, Corrosion protection of a novel SiO2@PANI coating for Q235 carbon steel. Prog. Org. Coat. 132, 227 (2019).CrossRef S. Shi, Y. Zhao, Z. Zhang, and L. Yu, Corrosion protection of a novel SiO2@PANI coating for Q235 carbon steel. Prog. Org. Coat. 132, 227 (2019).CrossRef
165.
Zurück zum Zitat F.J. Recio Cortés, J.F. Pagotto, A.J. Motheo and P. Herrasti,Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection. Surf.Coat.Technol. 289, 23 (2016) F.J. Recio Cortés, J.F. Pagotto, A.J. Motheo and P. Herrasti,Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection. Surf.Coat.Technol. 289, 23 (2016)
166.
Zurück zum Zitat A. Mostafaei and F. Nasirpouri, Epoxy/polyaniline-ZnOization and corrosion protection performance of conductingpaints. Prog. Org. Coat 77, 146 (2014).CrossRef A. Mostafaei and F. Nasirpouri, Epoxy/polyaniline-ZnOization and corrosion protection performance of conductingpaints. Prog. Org. Coat 77, 146 (2014).CrossRef
167.
Zurück zum Zitat T. Jeevananda, N.H. Kim, S.B. Heo, and J.H. Lee, Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate. Polym. Adv. Technol. 19, 1754 (2008).CrossRef T. Jeevananda, N.H. Kim, S.B. Heo, and J.H. Lee, Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate. Polym. Adv. Technol. 19, 1754 (2008).CrossRef
168.
Zurück zum Zitat K. Cai, S. Zuo, S. Luo, C. Yao, W. Liu, J. Ma, H. Mao, and Z. Li, Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv. 6, 95965 (2016).CrossRef K. Cai, S. Zuo, S. Luo, C. Yao, W. Liu, J. Ma, H. Mao, and Z. Li, Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv. 6, 95965 (2016).CrossRef
169.
Zurück zum Zitat A. Olad and H. Rasouli, Enhanced corrosion protective coating based on conducting polyaniline/zinc nanocomposite. J. Appl. Polym. Sci. 115, 2221 (2010).CrossRef A. Olad and H. Rasouli, Enhanced corrosion protective coating based on conducting polyaniline/zinc nanocomposite. J. Appl. Polym. Sci. 115, 2221 (2010).CrossRef
170.
Zurück zum Zitat R. Patil, and S. Radhakrishnan, Conducting polymer based hybrid nano-composites for enhanced corrosion protective coatings. Prog. Org. Coat. 57, 332 (2006).CrossRef R. Patil, and S. Radhakrishnan, Conducting polymer based hybrid nano-composites for enhanced corrosion protective coatings. Prog. Org. Coat. 57, 332 (2006).CrossRef
171.
Zurück zum Zitat H.H. Saleh, R. Sokary, and Z.I. Ali, Radiation- induced preparation of polyaniline/polyvinyl alcohol nanocomposites and their properties. Radiochim. Acta 107, 725 (2019).CrossRef H.H. Saleh, R. Sokary, and Z.I. Ali, Radiation- induced preparation of polyaniline/polyvinyl alcohol nanocomposites and their properties. Radiochim. Acta 107, 725 (2019).CrossRef
172.
Zurück zum Zitat N. Bafandeh, M.M. Larijani, A. Shafiekhani, M.R. Hantehzadeh, and N. Sheikh, Synthesis of polyaniline films: Case study on post gamma irradiation dose. J. Mater. Sci: Mater Electron 27, 10566 (2016). N. Bafandeh, M.M. Larijani, A. Shafiekhani, M.R. Hantehzadeh, and N. Sheikh, Synthesis of polyaniline films: Case study on post gamma irradiation dose. J. Mater. Sci: Mater Electron 27, 10566 (2016).
Metadaten
Titel
Gamma Radiation-Induced Synthesis of Polyaniline-Based Nanoparticles/Nanocomposites
verfasst von
Sajid Ahmad
Raheel Hammad
Seemin Rubab
Publikationsdatum
26.07.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 10/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09823-0

Weitere Artikel der Ausgabe 10/2022

Journal of Electronic Materials 10/2022 Zur Ausgabe