Skip to main content
Erschienen in: Journal of Electronic Materials 10/2022

12.08.2022 | Review Article

Catalytic and Energy Storage Applications of Metal/Polyaniline Nanocomposites: A Critical Review

verfasst von: Hilda Dinah Kyomuhimbo, Usisipho Feleni

Erschienen in: Journal of Electronic Materials | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conducting polymers (CPs) have attracted interest as solid supports for metal nanoparticles (MNPs) to improve their stability. In particular, polyaniline (PANI) has gained popularity due to its low cost, high electrical conductivity, stability and ease of preparation. PANI has been combined with various MNPs including silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) which have been used in various applications such as energy storage, catalysis and sensors. This review highlights the various applications of metal/PANI nanocomposites in catalysis and energy storage. The catalytic applications of metal/PANI nanocomposites in oxidation and reduction of pollutants such as toxic fuels and organic dyes to less harmful products have been discussed. Their application on coupling reactions such as C–C coupling, C–N coupling, and Ullman and click chemistry reactions have also been explored. Moreover, the electrocatalytic oxidation of alcohols and alkenes to their respective ketones and epoxides, respectively, by metal/PANI nanocomposites has been explored as well as their possible application in fuel cells. The review further discusses the application of metal/PANI nanocomposites as electrodes for supercapacitors and as bistable memory devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Liu, F. Li, L.-P. Ma, and H.-M. Cheng, Advanced Materials for Energy Storage. Adv. Mater. 22, E28 (2010).CrossRef C. Liu, F. Li, L.-P. Ma, and H.-M. Cheng, Advanced Materials for Energy Storage. Adv. Mater. 22, E28 (2010).CrossRef
2.
Zurück zum Zitat Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Nanostructured Conductive Polymers for Advanced Energy Storage. Chem. Soc. Rev. 44, 6684 (2015).CrossRef Y. Shi, L. Peng, Y. Ding, Y. Zhao, and G. Yu, Nanostructured Conductive Polymers for Advanced Energy Storage. Chem. Soc. Rev. 44, 6684 (2015).CrossRef
3.
Zurück zum Zitat S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, and V. Augustyn, Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 120, 6738 (2020).CrossRef S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, and V. Augustyn, Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 120, 6738 (2020).CrossRef
4.
Zurück zum Zitat A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, and J.M. D’Arcy, Conducting Polymers for Pseudocapacitive Energy Storage. Chem. Mater. 28, 5989 (2016).CrossRef A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, and J.M. D’Arcy, Conducting Polymers for Pseudocapacitive Energy Storage. Chem. Mater. 28, 5989 (2016).CrossRef
5.
Zurück zum Zitat J. Kim, J. Lee, J. You, M.-S. Park, M.S. Al Hossain, Y. Yamauchi, and J. Ho Kim, Conductive Polymers for Next-Generation Energy Storage Systems: Recent Progress and New Functions. Mater. Horiz. 3, 517 (2016).CrossRef J. Kim, J. Lee, J. You, M.-S. Park, M.S. Al Hossain, Y. Yamauchi, and J. Ho Kim, Conductive Polymers for Next-Generation Energy Storage Systems: Recent Progress and New Functions. Mater. Horiz. 3, 517 (2016).CrossRef
6.
Zurück zum Zitat H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, and H. Dai, Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials. Nano Res. 4, 729 (2011).CrossRef H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, and H. Dai, Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials. Nano Res. 4, 729 (2011).CrossRef
7.
Zurück zum Zitat S.K. Das, Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries. Angew. Chem. Int. Ed. 57, 16606 (2018).CrossRef S.K. Das, Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries. Angew. Chem. Int. Ed. 57, 16606 (2018).CrossRef
8.
Zurück zum Zitat R. Zhang, A. Palumbo, J.C. Kim, J. Ding, and E.-H. Yang, Flexible Graphene-, Graphene-Oxide-, and Carbon-Nanotube-Based Supercapacitors and Batteries. Ann. Phys. 531, 1800507 (2019).CrossRef R. Zhang, A. Palumbo, J.C. Kim, J. Ding, and E.-H. Yang, Flexible Graphene-, Graphene-Oxide-, and Carbon-Nanotube-Based Supercapacitors and Batteries. Ann. Phys. 531, 1800507 (2019).CrossRef
9.
Zurück zum Zitat A. Mahmood et al., Foldable and Scrollable Graphene Paper with Tuned Interlayer Spacing as High Areal Capacity Anodes for Sodium-Ion Batteries. Energy Storage Mater. 41, 395 (2021).CrossRef A. Mahmood et al., Foldable and Scrollable Graphene Paper with Tuned Interlayer Spacing as High Areal Capacity Anodes for Sodium-Ion Batteries. Energy Storage Mater. 41, 395 (2021).CrossRef
10.
Zurück zum Zitat K. Javed, M. Oolo, N. Savest, and A. Krumme, A Review on Graphene-Based Electrospun Conductive Nanofibers, Supercapacitors, Anodes, and Cathodes for Lithium-Ion Batteries. Crit. Rev. Solid State Mater. Sci. 44, 427 (2019).CrossRef K. Javed, M. Oolo, N. Savest, and A. Krumme, A Review on Graphene-Based Electrospun Conductive Nanofibers, Supercapacitors, Anodes, and Cathodes for Lithium-Ion Batteries. Crit. Rev. Solid State Mater. Sci. 44, 427 (2019).CrossRef
11.
Zurück zum Zitat A. Gohier, B. Laïk, K.-H. Kim, J.-L. Maurice, J.-P. Pereira-Ramos, C.S. Cojocaru, and P.T. Van, High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries. Adv. Mater. 24, 2592 (2012).CrossRef A. Gohier, B. Laïk, K.-H. Kim, J.-L. Maurice, J.-P. Pereira-Ramos, C.S. Cojocaru, and P.T. Van, High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries. Adv. Mater. 24, 2592 (2012).CrossRef
12.
Zurück zum Zitat T. Prem Kumar, R. Ramesh, Y.Y. Lin, and G.T.-K. Fey, Tin-Filled Carbon Nanotubes as Insertion Anode Materials for Lithium-Ion Batteries. Electrochem. Commun. 6, 520 (2004).CrossRef T. Prem Kumar, R. Ramesh, Y.Y. Lin, and G.T.-K. Fey, Tin-Filled Carbon Nanotubes as Insertion Anode Materials for Lithium-Ion Batteries. Electrochem. Commun. 6, 520 (2004).CrossRef
13.
Zurück zum Zitat J.-Q. Huang, Z.-L. Xu, S. Abouali, M. Akbari Garakani, and J.-K. Kim, Porous Graphene Oxide/Carbon Nanotube Hybrid Films as Interlayer for Lithium-Sulfur Batteries. Carbon 99, 624 (2016).CrossRef J.-Q. Huang, Z.-L. Xu, S. Abouali, M. Akbari Garakani, and J.-K. Kim, Porous Graphene Oxide/Carbon Nanotube Hybrid Films as Interlayer for Lithium-Sulfur Batteries. Carbon 99, 624 (2016).CrossRef
14.
Zurück zum Zitat M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes. Nano Lett. 9, 1872 (2009).CrossRef M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes. Nano Lett. 9, 1872 (2009).CrossRef
15.
Zurück zum Zitat H. Mi, X. Zhang, S. Yang, X. Ye, and J. Luo, Polyaniline Nanofibers as the Electrode Material for Supercapacitors. Mater. Chem. Phys. 112, 127 (2008).CrossRef H. Mi, X. Zhang, S. Yang, X. Ye, and J. Luo, Polyaniline Nanofibers as the Electrode Material for Supercapacitors. Mater. Chem. Phys. 112, 127 (2008).CrossRef
16.
Zurück zum Zitat X. Wang, J. Deng, X. Duan, D. Liu, J. Guo, and P. Liu, Crosslinked Polyaniline Nanorods with Improved Electrochemical Performance as Electrode Material for Supercapacitors. J. Mater. Chem. A 2, 12323 (2014).CrossRef X. Wang, J. Deng, X. Duan, D. Liu, J. Guo, and P. Liu, Crosslinked Polyaniline Nanorods with Improved Electrochemical Performance as Electrode Material for Supercapacitors. J. Mater. Chem. A 2, 12323 (2014).CrossRef
17.
Zurück zum Zitat H. Zhu, S. Peng, and W. Jiang, Electrochemical Properties of PANI as Single Electrode of Electrochemical Capacitors in Acid Electrolytes. Sci. World J. 2013, e940153 (2013). H. Zhu, S. Peng, and W. Jiang, Electrochemical Properties of PANI as Single Electrode of Electrochemical Capacitors in Acid Electrolytes. Sci. World J. 2013, e940153 (2013).
18.
Zurück zum Zitat Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, and C. Zhi, Nanostructured Polypyrrole as a Flexible Electrode Material of Supercapacitor. Nano Energy 22, 422 (2016).CrossRef Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, and C. Zhi, Nanostructured Polypyrrole as a Flexible Electrode Material of Supercapacitor. Nano Energy 22, 422 (2016).CrossRef
19.
Zurück zum Zitat K. Balakrishnan, M. Kumar, and S. Angaiah, Synthesis of Polythiophene and Its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. Adv. Mater. Res. 938, 151 (2014).CrossRef K. Balakrishnan, M. Kumar, and S. Angaiah, Synthesis of Polythiophene and Its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. Adv. Mater. Res. 938, 151 (2014).CrossRef
20.
Zurück zum Zitat B. Gnana Sundara Raj, A.M. Asiri, A.H. Qusti, J.J. Wu, and S. Anandan, Sonochemically Synthesized MnO2 Nanoparticles as Electrode Material for Supercapacitors. Ultrason. Sonochem. 21, 1933 (2014).CrossRef B. Gnana Sundara Raj, A.M. Asiri, A.H. Qusti, J.J. Wu, and S. Anandan, Sonochemically Synthesized MnO2 Nanoparticles as Electrode Material for Supercapacitors. Ultrason. Sonochem. 21, 1933 (2014).CrossRef
21.
Zurück zum Zitat Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, and X. Ji, Mesoporous NiCo2S4 Nanoparticles as High-Performance Electrode Materials for Supercapacitors. J. Power Sour. 273, 584 (2015).CrossRef Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, and X. Ji, Mesoporous NiCo2S4 Nanoparticles as High-Performance Electrode Materials for Supercapacitors. J. Power Sour. 273, 584 (2015).CrossRef
22.
Zurück zum Zitat P. Lamba, P. Singh, P. Singh, A. Kumar, Y.K. Bharti, and M. Gupta, Bioinspired Synthesis of Nickel Oxide Nanoparticles as Electrode Material for Supercapacitor Applications. Ionics 27, 5263 (2021).CrossRef P. Lamba, P. Singh, P. Singh, A. Kumar, Y.K. Bharti, and M. Gupta, Bioinspired Synthesis of Nickel Oxide Nanoparticles as Electrode Material for Supercapacitor Applications. Ionics 27, 5263 (2021).CrossRef
23.
Zurück zum Zitat N. Karthikeyan, T. Sivaranjani, S. Dhanavel, V.K. Gupta, V. Narayanan, and A. Stephen, Visible Light Degradation of Textile Effluent by Electrodeposited Multiphase CuInSe2 Semiconductor Photocatalysts. J. Mol. Liq. 227, 194 (2017).CrossRef N. Karthikeyan, T. Sivaranjani, S. Dhanavel, V.K. Gupta, V. Narayanan, and A. Stephen, Visible Light Degradation of Textile Effluent by Electrodeposited Multiphase CuInSe2 Semiconductor Photocatalysts. J. Mol. Liq. 227, 194 (2017).CrossRef
24.
Zurück zum Zitat Y. Yao, J. Zhang, L. Xue, T. Huang, and A. Yu, Carbon-Coated SiO2 Nanoparticles as Anode Material for Lithium Ion Batteries. J. Power Sour. 196, 10240 (2011).CrossRef Y. Yao, J. Zhang, L. Xue, T. Huang, and A. Yu, Carbon-Coated SiO2 Nanoparticles as Anode Material for Lithium Ion Batteries. J. Power Sour. 196, 10240 (2011).CrossRef
25.
Zurück zum Zitat H. Zhao, Z. Zheng, K.W. Wong, S. Wang, B. Huang, and D. Li, Fabrication and Electrochemical Performance of Nickel Ferrite Nanoparticles as Anode Material in Lithium Ion Batteries. Electrochem. Commun. 9, 2606 (2007).CrossRef H. Zhao, Z. Zheng, K.W. Wong, S. Wang, B. Huang, and D. Li, Fabrication and Electrochemical Performance of Nickel Ferrite Nanoparticles as Anode Material in Lithium Ion Batteries. Electrochem. Commun. 9, 2606 (2007).CrossRef
26.
Zurück zum Zitat R. Pavul Raj, P. Ragupathy, and S. Mohan, Remarkable Capacitive Behavior of a Co3O4–Polyindole Composite as Electrode Material for Supercapacitor Applications. J. Mater. Chem. A 3, 24338 (2015).CrossRef R. Pavul Raj, P. Ragupathy, and S. Mohan, Remarkable Capacitive Behavior of a Co3O4–Polyindole Composite as Electrode Material for Supercapacitor Applications. J. Mater. Chem. A 3, 24338 (2015).CrossRef
27.
Zurück zum Zitat X. Zheng, Q. Wang, J. Luan, Y. Li, and N. Wang, Patterned Metal/Polymer Composite Film with Good Mechanical Stability and Repeatability for Flexible Electronic Devices Using Nanoimprint Technology. Micromachines 10, 10 (2019). X. Zheng, Q. Wang, J. Luan, Y. Li, and N. Wang, Patterned Metal/Polymer Composite Film with Good Mechanical Stability and Repeatability for Flexible Electronic Devices Using Nanoimprint Technology. Micromachines 10, 10 (2019).
28.
Zurück zum Zitat A. Brzózka, K. Fic, J. Bogusz, A.M. Brudzisz, M.M. Marzec, M. Gajewska, and G.D. Sulka, Polypyrrole-Nickel Hydroxide Hybrid Nanowires as Future Materials for Energy Storage. Nanomaterials 9, 2 (2019).CrossRef A. Brzózka, K. Fic, J. Bogusz, A.M. Brudzisz, M.M. Marzec, M. Gajewska, and G.D. Sulka, Polypyrrole-Nickel Hydroxide Hybrid Nanowires as Future Materials for Energy Storage. Nanomaterials 9, 2 (2019).CrossRef
29.
Zurück zum Zitat T. Chen, Y. Fan, G. Wang, Q. Yang, and R. Yang, Rationally Designed Hierarchical ZnCo2O4/Polypyrrole Nanostructures for High-Performance Supercapacitor Electrodes. RSC Adv. 5, 74523 (2015).CrossRef T. Chen, Y. Fan, G. Wang, Q. Yang, and R. Yang, Rationally Designed Hierarchical ZnCo2O4/Polypyrrole Nanostructures for High-Performance Supercapacitor Electrodes. RSC Adv. 5, 74523 (2015).CrossRef
30.
Zurück zum Zitat S. Shahabuddin, A. K. Pandey, J. Kaur, R. Saidur, N. A. Mazlan, and S. Nor Atika Baharin, The Metal Oxide Nanoparticles Doped Polyaniline Based Nanocomposite as Stable Electrode Material for Supercapacitors, in 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE) (2018), pp. 1–7. S. Shahabuddin, A. K. Pandey, J. Kaur, R. Saidur, N. A. Mazlan, and S. Nor Atika Baharin, The Metal Oxide Nanoparticles Doped Polyaniline Based Nanocomposite as Stable Electrode Material for Supercapacitors, in 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE) (2018), pp. 1–7.
31.
Zurück zum Zitat A.M. Signori, K.O. Santos, R. Eising, B.L. Albuquerque, F.C. Giacomelli, and J.B. Domingos, Formation of Catalytic Silver Nanoparticles Supported on Branched Polyethyleneimine Derivatives. Langmuir 26, 17772 (2010).CrossRef A.M. Signori, K.O. Santos, R. Eising, B.L. Albuquerque, F.C. Giacomelli, and J.B. Domingos, Formation of Catalytic Silver Nanoparticles Supported on Branched Polyethyleneimine Derivatives. Langmuir 26, 17772 (2010).CrossRef
32.
Zurück zum Zitat C.J. Kirubaharan, G.G. Kumar, C. Sha, D. Zhou, H. Yang, K.S. Nahm, B.S. Raj, Y. Zhang, and Y.-C. Yong, Facile Fabrication of Au@polyaniline Core-Shell Nanocomposite as Efficient Anodic Catalyst for Microbial Fuel Cells. Electrochim. Acta 328, 135136 (2019).CrossRef C.J. Kirubaharan, G.G. Kumar, C. Sha, D. Zhou, H. Yang, K.S. Nahm, B.S. Raj, Y. Zhang, and Y.-C. Yong, Facile Fabrication of Au@polyaniline Core-Shell Nanocomposite as Efficient Anodic Catalyst for Microbial Fuel Cells. Electrochim. Acta 328, 135136 (2019).CrossRef
33.
Zurück zum Zitat J. Han, J. Dai, L. Li, P. Fang, and R. Guo, Highly Uniform Self-Assembled Conducting Polymer/Gold Fibrous Nanocomposites: Additive-Free Controllable Synthesis and Application as Efficient Recyclable Catalysts. Langmuir 27, 2181 (2011).CrossRef J. Han, J. Dai, L. Li, P. Fang, and R. Guo, Highly Uniform Self-Assembled Conducting Polymer/Gold Fibrous Nanocomposites: Additive-Free Controllable Synthesis and Application as Efficient Recyclable Catalysts. Langmuir 27, 2181 (2011).CrossRef
34.
Zurück zum Zitat A. Huang, Y. He, Y. Zhou, Y. Zhou, Y. Yang, J. Zhang, L. Luo, Q. Mao, D. Hou, and J. Yang, A Review of Recent Applications of Porous Metals and Metal Oxide in Energy Storage, Sensing and Catalysis. J. Mater. Sci. 54, 949 (2019).CrossRef A. Huang, Y. He, Y. Zhou, Y. Zhou, Y. Yang, J. Zhang, L. Luo, Q. Mao, D. Hou, and J. Yang, A Review of Recent Applications of Porous Metals and Metal Oxide in Energy Storage, Sensing and Catalysis. J. Mater. Sci. 54, 949 (2019).CrossRef
35.
Zurück zum Zitat A. J. Shnoudeh, I. Hamad, R. W. Abdo, L. Qadumii, A. Y. Jaber, H. S. Surchi, and S. Z. Alkelany, Chapter 15 - Synthesis, Characterization, and Applications of Metal Nanoparticles, in Biomaterials and Bionanotechnology, edited by R. K. Tekade (Academic Press, 2019), pp. 527–612. A. J. Shnoudeh, I. Hamad, R. W. Abdo, L. Qadumii, A. Y. Jaber, H. S. Surchi, and S. Z. Alkelany, Chapter 15 - Synthesis, Characterization, and Applications of Metal Nanoparticles, in Biomaterials and Bionanotechnology, edited by R. K. Tekade (Academic Press, 2019), pp. 527–612.
36.
Zurück zum Zitat E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, and Y. Gogotsi, Energy Storage: The Future Enabled by Nanomaterials. Science 366, eaan8285 (2019).CrossRef E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, and Y. Gogotsi, Energy Storage: The Future Enabled by Nanomaterials. Science 366, eaan8285 (2019).CrossRef
37.
Zurück zum Zitat P. Paulraj et al., Solid-State Synthesis of Ag-Doped PANI Nanocomposites for Their End-Use as an Electrochemical Sensor for Hydrogen Peroxide and Dopamine. Electrochim. Acta 363, 137158 (2020).CrossRef P. Paulraj et al., Solid-State Synthesis of Ag-Doped PANI Nanocomposites for Their End-Use as an Electrochemical Sensor for Hydrogen Peroxide and Dopamine. Electrochim. Acta 363, 137158 (2020).CrossRef
38.
Zurück zum Zitat Subodh, K. Prakash, and D. T. Masram, Silver Nanoparticles Immobilized Covalent Organic Microspheres for Hydrogenation of Nitroaromatics with Intriguing Catalytic Activity. ACS Appl. Polym. Mater. 3, 310 (2021). Subodh, K. Prakash, and D. T. Masram, Silver Nanoparticles Immobilized Covalent Organic Microspheres for Hydrogenation of Nitroaromatics with Intriguing Catalytic Activity. ACS Appl. Polym. Mater. 3, 310 (2021).
39.
Zurück zum Zitat S.P. Deshmukh, A.G. Dhodamani, S.M. Patil, S.B. Mullani, K.V. More, and S.D. Delekar, Interfacially Interactive Ternary Silver-Supported Polyaniline/Multiwalled Carbon Nanotube Nanocomposites for Catalytic and Antibacterial Activity. ACS Omega 5, 219 (2020).CrossRef S.P. Deshmukh, A.G. Dhodamani, S.M. Patil, S.B. Mullani, K.V. More, and S.D. Delekar, Interfacially Interactive Ternary Silver-Supported Polyaniline/Multiwalled Carbon Nanotube Nanocomposites for Catalytic and Antibacterial Activity. ACS Omega 5, 219 (2020).CrossRef
40.
Zurück zum Zitat X. Xu, X. Liu, Q. Yu, W. Wang, and S. Xing, Architecture-Adapted Raspberry-like Gold@polyaniline Particles: Facile Synthesis and Catalytic Activity. Colloid Polym. Sci. 290, 1759 (2012).CrossRef X. Xu, X. Liu, Q. Yu, W. Wang, and S. Xing, Architecture-Adapted Raspberry-like Gold@polyaniline Particles: Facile Synthesis and Catalytic Activity. Colloid Polym. Sci. 290, 1759 (2012).CrossRef
41.
Zurück zum Zitat R.P. Singh, A. Tiwari, and A.C. Pandey, Silver/Polyaniline Nanocomposite for the Electrocatalytic Hydrazine Oxidation. J. Inorg. Organomet. Polym. Mater. 21, 788 (2011).CrossRef R.P. Singh, A. Tiwari, and A.C. Pandey, Silver/Polyaniline Nanocomposite for the Electrocatalytic Hydrazine Oxidation. J. Inorg. Organomet. Polym. Mater. 21, 788 (2011).CrossRef
42.
Zurück zum Zitat B. Massoumi, S. Fathalipour, A. Massoudi, M. Hassanzadeh, and A.A. Entezami, Ag/Polyaniline Nanocomposites: Synthesize, Characterization, and Application to the Detection of Dopamine and Tyrosine. J. Appl. Polym. Sci. 130, 2780 (2013).CrossRef B. Massoumi, S. Fathalipour, A. Massoudi, M. Hassanzadeh, and A.A. Entezami, Ag/Polyaniline Nanocomposites: Synthesize, Characterization, and Application to the Detection of Dopamine and Tyrosine. J. Appl. Polym. Sci. 130, 2780 (2013).CrossRef
43.
Zurück zum Zitat E. Eskandari, M. Kosari, M.H. Davood Abadi Farahani, N.D. Khiavi, M. Saeedikhani, R. Katal, and M. Zarinejad, A Review on Polyaniline-Based Materials Applications in Heavy Metals Removal and Catalytic Processes. Sep. Purif. Technol. 231, 115901 (2020).CrossRef E. Eskandari, M. Kosari, M.H. Davood Abadi Farahani, N.D. Khiavi, M. Saeedikhani, R. Katal, and M. Zarinejad, A Review on Polyaniline-Based Materials Applications in Heavy Metals Removal and Catalytic Processes. Sep. Purif. Technol. 231, 115901 (2020).CrossRef
44.
Zurück zum Zitat K.E. Ramohlola, G.R. Monana, M.J. Hato, K.D. Modibane, K.M. Molapo, M. Masikini, S.B. Mduli, and E.I. Iwuoha, Polyaniline-Metal Organic Framework Nanocomposite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Compos. Part B Eng. 137, 129 (2018).CrossRef K.E. Ramohlola, G.R. Monana, M.J. Hato, K.D. Modibane, K.M. Molapo, M. Masikini, S.B. Mduli, and E.I. Iwuoha, Polyaniline-Metal Organic Framework Nanocomposite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Compos. Part B Eng. 137, 129 (2018).CrossRef
45.
Zurück zum Zitat X. Li, T. Cai, and E.-T. Kang, Yolk-Shell Nanocomposites of a Gold Nanocore Encapsulated in an Electroactive Polyaniline Shell for Catalytic Aerobic Oxidation. ACS Omega 1, 160 (2016).CrossRef X. Li, T. Cai, and E.-T. Kang, Yolk-Shell Nanocomposites of a Gold Nanocore Encapsulated in an Electroactive Polyaniline Shell for Catalytic Aerobic Oxidation. ACS Omega 1, 160 (2016).CrossRef
46.
Zurück zum Zitat B. Al-saida, W.A. Amer, E.E. Kandyel, and M.M. Ayad, Enhanced Dual Catalytic Activities of Silver-Polyaniline/Titanium Dioxide Magnetic Nanocomposite. J. Photochem. Photobiol. Chem. 392, 112423 (2020).CrossRef B. Al-saida, W.A. Amer, E.E. Kandyel, and M.M. Ayad, Enhanced Dual Catalytic Activities of Silver-Polyaniline/Titanium Dioxide Magnetic Nanocomposite. J. Photochem. Photobiol. Chem. 392, 112423 (2020).CrossRef
47.
Zurück zum Zitat U. Stamenović, V. Vodnik, N. Gavrilov, I.A. Pašti, M. Otončar, M. Mitrić, and S.D. Škapin, Developing an Advanced Electrocatalyst Derived from Triangular Silver Nanoplates@polyvinylpyrrolidone-Polyaniline Nanocomposites. Synth. Met. 257, 116173 (2019).CrossRef U. Stamenović, V. Vodnik, N. Gavrilov, I.A. Pašti, M. Otončar, M. Mitrić, and S.D. Škapin, Developing an Advanced Electrocatalyst Derived from Triangular Silver Nanoplates@polyvinylpyrrolidone-Polyaniline Nanocomposites. Synth. Met. 257, 116173 (2019).CrossRef
48.
Zurück zum Zitat Y. Gao, D. Shan, F. Cao, J. Gong, X. Li, H. Ma, Z. Su, and L. Qu, Silver/Polyaniline Composite Nanotubes: One-Step Synthesis and Electrocatalytic Activity for Neurotransmitter Dopamine. J. Phys. Chem. C 113, 15175 (2009).CrossRef Y. Gao, D. Shan, F. Cao, J. Gong, X. Li, H. Ma, Z. Su, and L. Qu, Silver/Polyaniline Composite Nanotubes: One-Step Synthesis and Electrocatalytic Activity for Neurotransmitter Dopamine. J. Phys. Chem. C 113, 15175 (2009).CrossRef
49.
Zurück zum Zitat L. Tang, F. Duan, and M. Chen, Silver Nanoparticle Decorated Polyaniline/Multiwalled Super-Short Carbon Nanotube Nanocomposites for Supercapacitor Applications. RSC Adv. 6, 65012 (2016).CrossRef L. Tang, F. Duan, and M. Chen, Silver Nanoparticle Decorated Polyaniline/Multiwalled Super-Short Carbon Nanotube Nanocomposites for Supercapacitor Applications. RSC Adv. 6, 65012 (2016).CrossRef
50.
Zurück zum Zitat Y. Wang, L. Bian, D. Tan, S. Chen, and Y. Gan, Sonochemical Synthesis of “Sea-Island” Structure Silver/Polyaniline Nanocomposites for the Detection of l-Tyrosine. J. Thermoplast. Compos. Mater. 30, 1033 (2017).CrossRef Y. Wang, L. Bian, D. Tan, S. Chen, and Y. Gan, Sonochemical Synthesis of “Sea-Island” Structure Silver/Polyaniline Nanocomposites for the Detection of l-Tyrosine. J. Thermoplast. Compos. Mater. 30, 1033 (2017).CrossRef
51.
Zurück zum Zitat G.M. Neelgund, E. Hrehorova, M. Joyce, and V. Bliznyuk, Synthesis and Characterization of Polyaniline Derivative and Silver Nanoparticle Composites. Polym. Int. 57, 1083 (2008).CrossRef G.M. Neelgund, E. Hrehorova, M. Joyce, and V. Bliznyuk, Synthesis and Characterization of Polyaniline Derivative and Silver Nanoparticle Composites. Polym. Int. 57, 1083 (2008).CrossRef
52.
Zurück zum Zitat P.K. Khanna, N. Singh, S. Charan, and A.K. Viswanath, Synthesis of Ag/Polyaniline Nanocomposite via an in Situ Photo-Redox Mechanism. Mater. Chem. Phys. 92, 214 (2005).CrossRef P.K. Khanna, N. Singh, S. Charan, and A.K. Viswanath, Synthesis of Ag/Polyaniline Nanocomposite via an in Situ Photo-Redox Mechanism. Mater. Chem. Phys. 92, 214 (2005).CrossRef
53.
Zurück zum Zitat A. Liu, L.H. Bac, J.-S. Kim, B.-K. Kim, and J.-C. Kim, Synthesis and Characterization of Conducting Polyaniline-Copper Composites. J. Nanosci. Nanotechnol. 13, 7728 (2013).CrossRef A. Liu, L.H. Bac, J.-S. Kim, B.-K. Kim, and J.-C. Kim, Synthesis and Characterization of Conducting Polyaniline-Copper Composites. J. Nanosci. Nanotechnol. 13, 7728 (2013).CrossRef
54.
Zurück zum Zitat U. Bogdanović, I. Pašti, G. Ćirić-Marjanović, M. Mitrić, S.P. Ahrenkiel, and V. Vodnik, Interfacial Synthesis of Gold-Polyaniline Nanocomposite and Its Electrocatalytic Application. ACS Appl. Mater. Interfaces 7, 28393 (2015).CrossRef U. Bogdanović, I. Pašti, G. Ćirić-Marjanović, M. Mitrić, S.P. Ahrenkiel, and V. Vodnik, Interfacial Synthesis of Gold-Polyaniline Nanocomposite and Its Electrocatalytic Application. ACS Appl. Mater. Interfaces 7, 28393 (2015).CrossRef
55.
Zurück zum Zitat M.D. Bedre, S. Basavaraja, B.D. Salwe, V. Shivakumar, L. Arunkumar, and A. Venkataraman, Preparation and Characterization of Pani and Pani-Ag Nanocomposites via Interfacial Polymerization. Polym. Compos. 30, 1668 (2009).CrossRef M.D. Bedre, S. Basavaraja, B.D. Salwe, V. Shivakumar, L. Arunkumar, and A. Venkataraman, Preparation and Characterization of Pani and Pani-Ag Nanocomposites via Interfacial Polymerization. Polym. Compos. 30, 1668 (2009).CrossRef
56.
Zurück zum Zitat B. Zhang, B. Zhao, S. Huang, R. Zhang, P. Xu, and H.-L. Wang, One-Pot Interfacial Synthesis of Au Nanoparticles and Au–Polyaniline Nanocomposites for Catalytic Applications. CrystEngComm 14, 1542 (2012).CrossRef B. Zhang, B. Zhao, S. Huang, R. Zhang, P. Xu, and H.-L. Wang, One-Pot Interfacial Synthesis of Au Nanoparticles and Au–Polyaniline Nanocomposites for Catalytic Applications. CrystEngComm 14, 1542 (2012).CrossRef
57.
Zurück zum Zitat M.R. Karim, K.T. Lim, C.J. Lee, M.T.I. Bhuiyan, H.J. Kim, L.-S. Park, and M.S. Lee, Synthesis of Core-Shell Silver-Polyaniline Nanocomposites by Gamma Radiolysis Method. J. Polym. Sci. Part Polym. Chem. 45, 5741 (2007).CrossRef M.R. Karim, K.T. Lim, C.J. Lee, M.T.I. Bhuiyan, H.J. Kim, L.-S. Park, and M.S. Lee, Synthesis of Core-Shell Silver-Polyaniline Nanocomposites by Gamma Radiolysis Method. J. Polym. Sci. Part Polym. Chem. 45, 5741 (2007).CrossRef
58.
Zurück zum Zitat S.K. Pillalamarri, F.D. Blum, A.T. Tokuhiro, and M.F. Bertino, One-Pot Synthesis of Polyaniline−Metal Nanocomposites. Chem. Mater. 17, 5941 (2005).CrossRef S.K. Pillalamarri, F.D. Blum, A.T. Tokuhiro, and M.F. Bertino, One-Pot Synthesis of Polyaniline−Metal Nanocomposites. Chem. Mater. 17, 5941 (2005).CrossRef
59.
Zurück zum Zitat A. Alyan, S. Abdel-Samad, A. Massoud, and S.A. Waly, Characterization and Thermal Conductivity Investigation of Copper-Polyaniline Nano Composite Synthesized by Gamma Radiolysis Method. Heat Mass Transf. 55, 2409 (2019).CrossRef A. Alyan, S. Abdel-Samad, A. Massoud, and S.A. Waly, Characterization and Thermal Conductivity Investigation of Copper-Polyaniline Nano Composite Synthesized by Gamma Radiolysis Method. Heat Mass Transf. 55, 2409 (2019).CrossRef
60.
Zurück zum Zitat S. Dutt, P.F. Siril, V. Sharma, and S. Periasamy, Goldcore-Polyanilineshell Composite Nanowires as a Substrate for Surface Enhanced Raman Scattering and Catalyst for Dye Reduction. New J. Chem. 39, 902 (2015).CrossRef S. Dutt, P.F. Siril, V. Sharma, and S. Periasamy, Goldcore-Polyanilineshell Composite Nanowires as a Substrate for Surface Enhanced Raman Scattering and Catalyst for Dye Reduction. New J. Chem. 39, 902 (2015).CrossRef
61.
Zurück zum Zitat X. Li, Y. Gao, J. Gong, L. Zhang, and L. Qu, Polyaniline/Ag Composite Nanotubes Prepared through UV Rays Irradiation via Fiber Template Approach and Their NH3 Gas Sensitivity. J. Phys. Chem. C 113, 69 (2009).CrossRef X. Li, Y. Gao, J. Gong, L. Zhang, and L. Qu, Polyaniline/Ag Composite Nanotubes Prepared through UV Rays Irradiation via Fiber Template Approach and Their NH3 Gas Sensitivity. J. Phys. Chem. C 113, 69 (2009).CrossRef
62.
Zurück zum Zitat K.J. Kshirasagar, U.S. Markad, A. Saha, K.K.K. Sharma, and G.K. Sharma, Facile Synthesis of Palladium Nanoparticle Doped Polyaniline Nanowires in Soft Templates for Catalytic Applications. Mater. Res. Express 4, 025015 (2017).CrossRef K.J. Kshirasagar, U.S. Markad, A. Saha, K.K.K. Sharma, and G.K. Sharma, Facile Synthesis of Palladium Nanoparticle Doped Polyaniline Nanowires in Soft Templates for Catalytic Applications. Mater. Res. Express 4, 025015 (2017).CrossRef
63.
Zurück zum Zitat A.-J. Wang, J.-J. Feng, Y.-F. Li, J.-L. Xi, and W.-J. Dong, In-Situ Decorated Gold Nanoparticles on Polyaniline with Enhanced Electrocatalysis toward Dopamine. Microchim. Acta 171, 431 (2010).CrossRef A.-J. Wang, J.-J. Feng, Y.-F. Li, J.-L. Xi, and W.-J. Dong, In-Situ Decorated Gold Nanoparticles on Polyaniline with Enhanced Electrocatalysis toward Dopamine. Microchim. Acta 171, 431 (2010).CrossRef
64.
Zurück zum Zitat C. Coutanceau, M.J. Croissant, T. Napporn, and C. Lamy, Electrocatalytic Reduction of Dioxygen at Platinum Particles Dispersed in a Polyaniline Film. Electrochim. Acta 46, 579 (2000).CrossRef C. Coutanceau, M.J. Croissant, T. Napporn, and C. Lamy, Electrocatalytic Reduction of Dioxygen at Platinum Particles Dispersed in a Polyaniline Film. Electrochim. Acta 46, 579 (2000).CrossRef
65.
Zurück zum Zitat A. Ourari, R. Zerdoumi, R. Ruiz-Rosas, and E. Morallon, Synthesis and Catalytic Properties of Modified Electrodes by Pulsed Electrodeposition of Pt/PANI Nanocomposite. Materials 12, 5 (2019).CrossRef A. Ourari, R. Zerdoumi, R. Ruiz-Rosas, and E. Morallon, Synthesis and Catalytic Properties of Modified Electrodes by Pulsed Electrodeposition of Pt/PANI Nanocomposite. Materials 12, 5 (2019).CrossRef
66.
Zurück zum Zitat A. Nyczyk, M. Hasik, W. Turek, and A. Sniechota, Nanocomposites of Polyaniline, Its Derivatives and Platinum Prepared Using Aqueous Pt Sol. Synth. Met. 159, 561 (2009).CrossRef A. Nyczyk, M. Hasik, W. Turek, and A. Sniechota, Nanocomposites of Polyaniline, Its Derivatives and Platinum Prepared Using Aqueous Pt Sol. Synth. Met. 159, 561 (2009).CrossRef
67.
Zurück zum Zitat V. Divya, and M.V. Sangaranarayanan, A Facile Synthetic Strategy for Mesoporous Crystalline Copper-Polyaniline Composite. Eur. Polym. J. 48, 560 (2012).CrossRef V. Divya, and M.V. Sangaranarayanan, A Facile Synthetic Strategy for Mesoporous Crystalline Copper-Polyaniline Composite. Eur. Polym. J. 48, 560 (2012).CrossRef
68.
Zurück zum Zitat Z. Lu, W. Dai, B. Liu, G. Mo, J. Zhang, J. Ye, and J. Ye, One Pot Synthesis of Dandelion-like Polyaniline Coated Gold Nanoparticles Composites for Electrochemical Sensing Applications. J. Colloid Interface Sci. 525, 86 (2018).CrossRef Z. Lu, W. Dai, B. Liu, G. Mo, J. Zhang, J. Ye, and J. Ye, One Pot Synthesis of Dandelion-like Polyaniline Coated Gold Nanoparticles Composites for Electrochemical Sensing Applications. J. Colloid Interface Sci. 525, 86 (2018).CrossRef
69.
Zurück zum Zitat A. Houdayer, R. Schneider, D. Billaud, J. Ghanbaja, and J. Lambert, New Polyaniline/Ni(0) Nanocomposites: Synthesis, Characterization and Evaluation of Their Catalytic Activity in Heck Couplings. Synth. Met. 151, 165 (2005).CrossRef A. Houdayer, R. Schneider, D. Billaud, J. Ghanbaja, and J. Lambert, New Polyaniline/Ni(0) Nanocomposites: Synthesis, Characterization and Evaluation of Their Catalytic Activity in Heck Couplings. Synth. Met. 151, 165 (2005).CrossRef
70.
Zurück zum Zitat J.M. Kinyanjui, D.W. Hatchett, J.A. Smith, and M. Josowicz, Chemical Synthesis of a Polyaniline/Gold Composite Using Tetrachloroaurate. Chem. Mater. 16, 3390 (2004).CrossRef J.M. Kinyanjui, D.W. Hatchett, J.A. Smith, and M. Josowicz, Chemical Synthesis of a Polyaniline/Gold Composite Using Tetrachloroaurate. Chem. Mater. 16, 3390 (2004).CrossRef
71.
Zurück zum Zitat H. Gul, A.-H.A. Shah, U. Krewer, and S. Bilal, Study on Direct Synthesis of Energy Efficient Multifunctional Polyaniline-Graphene Oxide Nanocomposite and Its Application in Aqueous Symmetric Supercapacitor Devices. Nanomaterials 10, 1 (2020).CrossRef H. Gul, A.-H.A. Shah, U. Krewer, and S. Bilal, Study on Direct Synthesis of Energy Efficient Multifunctional Polyaniline-Graphene Oxide Nanocomposite and Its Application in Aqueous Symmetric Supercapacitor Devices. Nanomaterials 10, 1 (2020).CrossRef
72.
Zurück zum Zitat K.K. Sadasivuni et al., Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications, Polymer Nanocomposites in Biomedical Engineering. ed. K.K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, and M.A.S.A. Al-Maadeed (Cham: Springer International Publishing, 2019), pp. 331–373.CrossRef K.K. Sadasivuni et al., Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications, Polymer Nanocomposites in Biomedical Engineering. ed. K.K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, and M.A.S.A. Al-Maadeed (Cham: Springer International Publishing, 2019), pp. 331–373.CrossRef
73.
Zurück zum Zitat H.H. Saleh, Z.I. Ali, and T.A. Afify, Synthesis of Ag/PANI Core Shell Nanocomposites Using Ionizing Radiation. Adv. Polym. Technol. 35, 335 (2016).CrossRef H.H. Saleh, Z.I. Ali, and T.A. Afify, Synthesis of Ag/PANI Core Shell Nanocomposites Using Ionizing Radiation. Adv. Polym. Technol. 35, 335 (2016).CrossRef
74.
Zurück zum Zitat K.-P. Lee, A.I. Gopalan, P. Santhosh, S.H. Lee, and Y.C. Nho, Gamma Radiation Induced Distribution of Gold Nanoparticles into Carbon Nanotube-Polyaniline Composite. Compos. Sci. Technol. 67, 811 (2007).CrossRef K.-P. Lee, A.I. Gopalan, P. Santhosh, S.H. Lee, and Y.C. Nho, Gamma Radiation Induced Distribution of Gold Nanoparticles into Carbon Nanotube-Polyaniline Composite. Compos. Sci. Technol. 67, 811 (2007).CrossRef
75.
Zurück zum Zitat R.A. de Barros, and W.M. de Azevedo, Polyaniline/Silver Nanocomposite Preparation under Extreme or Non-Classical Conditions. Synth. Met. 158, 922 (2008).CrossRef R.A. de Barros, and W.M. de Azevedo, Polyaniline/Silver Nanocomposite Preparation under Extreme or Non-Classical Conditions. Synth. Met. 158, 922 (2008).CrossRef
76.
Zurück zum Zitat K. Takemura, J. Satoh, J. Boonyakida, S. Park, A.D. Chowdhury, and E.Y. Park, Electrochemical Detection of White Spot Syndrome Virus with a Silicone Rubber Disposable Electrode Composed of Graphene Quantum Dots and Gold Nanoparticle-Embedded Polyaniline Nanowires. J. Nanobiotechnology 18, 152 (2020).CrossRef K. Takemura, J. Satoh, J. Boonyakida, S. Park, A.D. Chowdhury, and E.Y. Park, Electrochemical Detection of White Spot Syndrome Virus with a Silicone Rubber Disposable Electrode Composed of Graphene Quantum Dots and Gold Nanoparticle-Embedded Polyaniline Nanowires. J. Nanobiotechnology 18, 152 (2020).CrossRef
77.
Zurück zum Zitat U. Bogdanović, V.V. Vodnik, S.P. Ahrenkiel, M. Stoiljković, G. Ćirić-Marjanović, and J.M. Nedeljković, Interfacial Synthesis and Characterization of Gold/Polyaniline Nanocomposites. Synth. Met. 195, 122 (2014).CrossRef U. Bogdanović, V.V. Vodnik, S.P. Ahrenkiel, M. Stoiljković, G. Ćirić-Marjanović, and J.M. Nedeljković, Interfacial Synthesis and Characterization of Gold/Polyaniline Nanocomposites. Synth. Met. 195, 122 (2014).CrossRef
78.
Zurück zum Zitat A. Kitani, T. Akashi, K. Sugimoto, and S. Ito, Electrocatalytic Oxidation of Methanol on Platinum Modified Polyaniline Electrodes. Synth. Met. 121, 1301 (2001).CrossRef A. Kitani, T. Akashi, K. Sugimoto, and S. Ito, Electrocatalytic Oxidation of Methanol on Platinum Modified Polyaniline Electrodes. Synth. Met. 121, 1301 (2001).CrossRef
79.
Zurück zum Zitat P. Chakraborty, Y.-A. Chien, T.-F.M. Chang, M. Sone, and T. Nakamoto, Indirect Sensing of Lower Aliphatic Ester Using Atomic Gold Decorated Polyaniline Electrode. Sensors 20, 13 (2020).CrossRef P. Chakraborty, Y.-A. Chien, T.-F.M. Chang, M. Sone, and T. Nakamoto, Indirect Sensing of Lower Aliphatic Ester Using Atomic Gold Decorated Polyaniline Electrode. Sensors 20, 13 (2020).CrossRef
80.
Zurück zum Zitat N. Shoaie, M. Forouzandeh, and K. Omidfar, Voltammetric Determination of the Escherichia Coli DNA Using a Screen-Printed Carbon Electrode Modified with Polyaniline and Gold Nanoparticles. Microchim. Acta 185, 217 (2018).CrossRef N. Shoaie, M. Forouzandeh, and K. Omidfar, Voltammetric Determination of the Escherichia Coli DNA Using a Screen-Printed Carbon Electrode Modified with Polyaniline and Gold Nanoparticles. Microchim. Acta 185, 217 (2018).CrossRef
81.
Zurück zum Zitat W. Jin, X. Huang, H. Cheng, T. Xu, F. Wang, X. Guo, Y. Wu, Y. Ying, Y. Wen, and H. Yang, Polyaniline Hollow Tubes Loading Tiny Platinum Nanoparticles for Boosting Methanol Oxidation. Appl. Surf. Sci. 483, 489 (2019).CrossRef W. Jin, X. Huang, H. Cheng, T. Xu, F. Wang, X. Guo, Y. Wu, Y. Ying, Y. Wen, and H. Yang, Polyaniline Hollow Tubes Loading Tiny Platinum Nanoparticles for Boosting Methanol Oxidation. Appl. Surf. Sci. 483, 489 (2019).CrossRef
82.
Zurück zum Zitat G.N. Abdelrasoul, F. Pignatelli, I. Liakos, R. Cingolani, and A. Athanassiou, Plasmonic Polyaniline/Gold Nanorods Hybrid Composites for Selective NIR Photodetection: Synthesis and Characterization. Compos. Part B Eng. 149, 178 (2018).CrossRef G.N. Abdelrasoul, F. Pignatelli, I. Liakos, R. Cingolani, and A. Athanassiou, Plasmonic Polyaniline/Gold Nanorods Hybrid Composites for Selective NIR Photodetection: Synthesis and Characterization. Compos. Part B Eng. 149, 178 (2018).CrossRef
83.
Zurück zum Zitat A.B. Afzal, M.J. Akhtar, M. Nadeem, and M.M. Hassan, Investigation of Structural and Electrical Properties of Polyaniline/Gold Nanocomposites. J. Phys. Chem. C 113, 17560 (2009).CrossRef A.B. Afzal, M.J. Akhtar, M. Nadeem, and M.M. Hassan, Investigation of Structural and Electrical Properties of Polyaniline/Gold Nanocomposites. J. Phys. Chem. C 113, 17560 (2009).CrossRef
84.
Zurück zum Zitat Q. Xu, J. Leng, H. Li, G. Lu, Y. Wang, and X.-Y. Hu, The Preparation of Polyaniline/Gold Nanocomposites by Self-Assembly and Their Electrochemical Applications. React. Funct. Polym. 70, 663 (2010).CrossRef Q. Xu, J. Leng, H. Li, G. Lu, Y. Wang, and X.-Y. Hu, The Preparation of Polyaniline/Gold Nanocomposites by Self-Assembly and Their Electrochemical Applications. React. Funct. Polym. 70, 663 (2010).CrossRef
85.
Zurück zum Zitat A. John, L. Benny, A.R. Cherian, S.Y. Narahari, A. Varghese, and G. Hegde, Electrochemical Sensors Using Conducting Polymer/Noble Metal Nanoparticle Nanocomposites for the Detection of Various Analytes: A Review. J. Nanostruct. Chem. 11, 1 (2021).CrossRef A. John, L. Benny, A.R. Cherian, S.Y. Narahari, A. Varghese, and G. Hegde, Electrochemical Sensors Using Conducting Polymer/Noble Metal Nanoparticle Nanocomposites for the Detection of Various Analytes: A Review. J. Nanostruct. Chem. 11, 1 (2021).CrossRef
86.
Zurück zum Zitat T. Sen, S. Mishra, and N.G. Shimpi, Synthesis and Sensing Applications of Polyaniline Nanocomposites: A Review. RSC Adv. 6, 42196 (2016).CrossRef T. Sen, S. Mishra, and N.G. Shimpi, Synthesis and Sensing Applications of Polyaniline Nanocomposites: A Review. RSC Adv. 6, 42196 (2016).CrossRef
87.
Zurück zum Zitat L. Tang, F. Duan, and M. Chen, Green Synthesis of Silver Nanoparticles Embedded in Polyaniline Nanofibers via Vitamin C for Supercapacitor Applications. J. Mater. Sci. Mater. Electron. 28, 7769 (2017).CrossRef L. Tang, F. Duan, and M. Chen, Green Synthesis of Silver Nanoparticles Embedded in Polyaniline Nanofibers via Vitamin C for Supercapacitor Applications. J. Mater. Sci. Mater. Electron. 28, 7769 (2017).CrossRef
88.
Zurück zum Zitat S. Dhibar, and C.K. Das, Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode. Ind. Eng. Chem. Res. 53, 3495 (2014).CrossRef S. Dhibar, and C.K. Das, Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode. Ind. Eng. Chem. Res. 53, 3495 (2014).CrossRef
89.
Zurück zum Zitat M.A. Salem, R.G. Elsharkawy, and M.F. Hablas, Adsorption of Brilliant Green Dye by Polyaniline/Silver Nanocomposite: Kinetic, Equilibrium, and Thermodynamic Studies. Eur. Polym. J. 75, 577 (2016).CrossRef M.A. Salem, R.G. Elsharkawy, and M.F. Hablas, Adsorption of Brilliant Green Dye by Polyaniline/Silver Nanocomposite: Kinetic, Equilibrium, and Thermodynamic Studies. Eur. Polym. J. 75, 577 (2016).CrossRef
90.
Zurück zum Zitat D.S. Patil, S.A. Pawar, S.S. Mali, C.K. Hong, J.H. Kim, P.S. Patil, and J.C. Shin, Investigations on Nanocomposites of Silver Nanosticks and Polyaniline for Supercapacitor Application. J. Nanosci. Nanotechnol. 17, 4194 (2017).CrossRef D.S. Patil, S.A. Pawar, S.S. Mali, C.K. Hong, J.H. Kim, P.S. Patil, and J.C. Shin, Investigations on Nanocomposites of Silver Nanosticks and Polyaniline for Supercapacitor Application. J. Nanosci. Nanotechnol. 17, 4194 (2017).CrossRef
91.
Zurück zum Zitat C. Yuan et al., Heterogeneous Silver-Polyaniline Nanocomposites with Tunable Morphology and Controllable Catalytic Properties. Nanotechnology 24, 185602 (2013).CrossRef C. Yuan et al., Heterogeneous Silver-Polyaniline Nanocomposites with Tunable Morphology and Controllable Catalytic Properties. Nanotechnology 24, 185602 (2013).CrossRef
92.
Zurück zum Zitat R.J. Tseng, J. Huang, J. Ouyang, and R.B. Kaner, Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano Lett. 5, 1077 (2005).CrossRef R.J. Tseng, J. Huang, J. Ouyang, and R.B. Kaner, Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano Lett. 5, 1077 (2005).CrossRef
93.
Zurück zum Zitat J. Song, J. Yuan, F. Li, D. Han, J. Song, and L. Niu, Tunable Activity in Electrochemical Reduction of Oxygen by Gold-Polyaniline Porous Nanocomposites. J. Solid State Electrochem. 14, 1915 (2010).CrossRef J. Song, J. Yuan, F. Li, D. Han, J. Song, and L. Niu, Tunable Activity in Electrochemical Reduction of Oxygen by Gold-Polyaniline Porous Nanocomposites. J. Solid State Electrochem. 14, 1915 (2010).CrossRef
94.
Zurück zum Zitat P. Mondal, C. Guo, and J.L. Yarger, Water Soluble Gold-Polyaniline Nanocomposite: A Substrate for Surface Enhanced Raman Scattering and Catalyst for Dye Degradation. Arab. J. Chem. 13, 4009 (2020).CrossRef P. Mondal, C. Guo, and J.L. Yarger, Water Soluble Gold-Polyaniline Nanocomposite: A Substrate for Surface Enhanced Raman Scattering and Catalyst for Dye Degradation. Arab. J. Chem. 13, 4009 (2020).CrossRef
95.
Zurück zum Zitat A. Vijayakumar, Y. Zhao, J. Zou, K. Wang, C.-Y. Lee, D.R. MacFarlane, C. Wang, and G.G. Wallace, A Self-Assembled CO2 Reduction Electrocatalyst: Posy-Bouquet-Shaped Gold-Polyaniline Core-Shell Nanocomposite. Chemsuschem 13, 5023 (2020).CrossRef A. Vijayakumar, Y. Zhao, J. Zou, K. Wang, C.-Y. Lee, D.R. MacFarlane, C. Wang, and G.G. Wallace, A Self-Assembled CO2 Reduction Electrocatalyst: Posy-Bouquet-Shaped Gold-Polyaniline Core-Shell Nanocomposite. Chemsuschem 13, 5023 (2020).CrossRef
96.
Zurück zum Zitat S. Shoba, O.M. Bankole, and A.S. Ogunlaja, Electrocatalytic Oxidation of Dibenzothiophene and 4,6-Dimethyldibenzothiophene at Gold-Polyaniline (Au-PANI) Composite Electrodes. Electrocatalysis 11, 593 (2020).CrossRef S. Shoba, O.M. Bankole, and A.S. Ogunlaja, Electrocatalytic Oxidation of Dibenzothiophene and 4,6-Dimethyldibenzothiophene at Gold-Polyaniline (Au-PANI) Composite Electrodes. Electrocatalysis 11, 593 (2020).CrossRef
97.
Zurück zum Zitat F. Ran, Y. Tan, W. Dong, Z. Liu, L. Kong, and L. Kang, In Situ Polymerization and Reduction to Fabricate Gold Nanoparticle-Incorporated Polyaniline as Supercapacitor Electrode Materials. Polym. Adv. Technol. 29, 1697 (2018).CrossRef F. Ran, Y. Tan, W. Dong, Z. Liu, L. Kong, and L. Kang, In Situ Polymerization and Reduction to Fabricate Gold Nanoparticle-Incorporated Polyaniline as Supercapacitor Electrode Materials. Polym. Adv. Technol. 29, 1697 (2018).CrossRef
98.
Zurück zum Zitat J. Milikić, U. Stamenović, V. Vodnik, S.P. Ahrenkiel, and B. Šljukić, Gold Nanorod-Polyaniline Composites: Synthesis and Evaluation as Anode Electrocatalysts for Direct Borohydride Fuel Cells. Electrochim. Acta 328, 135115 (2019).CrossRef J. Milikić, U. Stamenović, V. Vodnik, S.P. Ahrenkiel, and B. Šljukić, Gold Nanorod-Polyaniline Composites: Synthesis and Evaluation as Anode Electrocatalysts for Direct Borohydride Fuel Cells. Electrochim. Acta 328, 135115 (2019).CrossRef
99.
Zurück zum Zitat Y. Tan, Y. Liu, L. Kong, L. Kang, C. Xu, and F. Ran, In Situ Doping of PANI Nanocomposites by Gold Nanoparticles for High-Performance Electrochemical Energy Storage. J. Appl. Polym. Sci. 134, 45309 (2017).CrossRef Y. Tan, Y. Liu, L. Kong, L. Kang, C. Xu, and F. Ran, In Situ Doping of PANI Nanocomposites by Gold Nanoparticles for High-Performance Electrochemical Energy Storage. J. Appl. Polym. Sci. 134, 45309 (2017).CrossRef
100.
Zurück zum Zitat Y. Tan, Y. Zhang, L. Kong, L. Kang, and F. Ran, Nano-Au@PANI Core-Shell Nanoparticles via in-Situ Polymerization as Electrode for Supercapacitor. J. Alloys Compd. 722, 1 (2017).CrossRef Y. Tan, Y. Zhang, L. Kong, L. Kang, and F. Ran, Nano-Au@PANI Core-Shell Nanoparticles via in-Situ Polymerization as Electrode for Supercapacitor. J. Alloys Compd. 722, 1 (2017).CrossRef
101.
Zurück zum Zitat R.J. Tseng, C.O. Baker, B. Shedd, J. Huang, R.B. Kaner, J. Ouyang, and Y. Yang, Charge Transfer Effect in the Polyaniline-Gold Nanoparticle Memory System. Appl. Phys. Lett. 90, 053101 (2007).CrossRef R.J. Tseng, C.O. Baker, B. Shedd, J. Huang, R.B. Kaner, J. Ouyang, and Y. Yang, Charge Transfer Effect in the Polyaniline-Gold Nanoparticle Memory System. Appl. Phys. Lett. 90, 053101 (2007).CrossRef
102.
Zurück zum Zitat C.O. Baker, B. Shedd, R.J. Tseng, A.A. Martinez-Morales, C.S. Ozkan, M. Ozkan, Y. Yang, and R.B. Kaner, Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices. ACS Nano 5, 3469 (2011).CrossRef C.O. Baker, B. Shedd, R.J. Tseng, A.A. Martinez-Morales, C.S. Ozkan, M. Ozkan, Y. Yang, and R.B. Kaner, Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices. ACS Nano 5, 3469 (2011).CrossRef
103.
Zurück zum Zitat S. Liu, H. Xu, J. Ou, Z. Li, S. Yang, and J. Wang, A Feasible Approach to the Fabrication of Gold/Polyaniline Nanofiber Composites and Its Application as Electrocatalyst for Oxygen Reduction. Mater. Chem. Phys. 132, 500 (2012).CrossRef S. Liu, H. Xu, J. Ou, Z. Li, S. Yang, and J. Wang, A Feasible Approach to the Fabrication of Gold/Polyaniline Nanofiber Composites and Its Application as Electrocatalyst for Oxygen Reduction. Mater. Chem. Phys. 132, 500 (2012).CrossRef
104.
Zurück zum Zitat A.A. Athawale, and S.V. Bhagwat, Synthesis and Characterization of Novel Copper/Polyaniline Nanocomposite and Application as a Catalyst in the Wacker Oxidation Reaction. J. Appl. Polym. Sci. 89, 2412 (2003).CrossRef A.A. Athawale, and S.V. Bhagwat, Synthesis and Characterization of Novel Copper/Polyaniline Nanocomposite and Application as a Catalyst in the Wacker Oxidation Reaction. J. Appl. Polym. Sci. 89, 2412 (2003).CrossRef
105.
Zurück zum Zitat Y. Chen, Q. Zhang, X. Jing, J. Han, and L. Yu, Synthesis of Cu-Doped Polyaniline Nanocomposites (Nano Cu@PANI) via the H2O2-Promoted Oxidative Polymerization of Aniline with Copper Salt. Mater. Lett. 242, 170 (2019).CrossRef Y. Chen, Q. Zhang, X. Jing, J. Han, and L. Yu, Synthesis of Cu-Doped Polyaniline Nanocomposites (Nano Cu@PANI) via the H2O2-Promoted Oxidative Polymerization of Aniline with Copper Salt. Mater. Lett. 242, 170 (2019).CrossRef
106.
Zurück zum Zitat S. Ivanov, U. Lange, V. Tsakova, and V.M. Mirsky, Electrocatalytically Active Nanocomposite from Palladium Nanoparticles and Polyaniline: Oxidation of Hydrazine. Sens. Actuators B Chem. 150, 271 (2010).CrossRef S. Ivanov, U. Lange, V. Tsakova, and V.M. Mirsky, Electrocatalytically Active Nanocomposite from Palladium Nanoparticles and Polyaniline: Oxidation of Hydrazine. Sens. Actuators B Chem. 150, 271 (2010).CrossRef
107.
Zurück zum Zitat A. Houdayer, R. Schneider, D. Billaud, J. Ghanbaja, and J. Lambert, Heck and Suzuki-Miyaura Couplings Catalyzed by Nanosized Palladium in Polyaniline. Appl. Organomet. Chem. 19, 1239 (2005).CrossRef A. Houdayer, R. Schneider, D. Billaud, J. Ghanbaja, and J. Lambert, Heck and Suzuki-Miyaura Couplings Catalyzed by Nanosized Palladium in Polyaniline. Appl. Organomet. Chem. 19, 1239 (2005).CrossRef
108.
Zurück zum Zitat S. Dutt, R. Kumar, and P. Felix Siril, Green Synthesis of a Palladium-Polyaniline Nanocomposite for Green Suzuki-Miyaura Coupling Reactions. RSC Adv. 5, 33786 (2015).CrossRef S. Dutt, R. Kumar, and P. Felix Siril, Green Synthesis of a Palladium-Polyaniline Nanocomposite for Green Suzuki-Miyaura Coupling Reactions. RSC Adv. 5, 33786 (2015).CrossRef
109.
Zurück zum Zitat B.J. Gallon, R.W. Kojima, R.B. Kaner, and P.L. Diaconescu, Palladium Nanoparticles Supported on Polyaniline Nanofibers as a Semi-Heterogeneous Catalyst in Water. Angew. Chem. Int. Ed. 46, 7251 (2007).CrossRef B.J. Gallon, R.W. Kojima, R.B. Kaner, and P.L. Diaconescu, Palladium Nanoparticles Supported on Polyaniline Nanofibers as a Semi-Heterogeneous Catalyst in Water. Angew. Chem. Int. Ed. 46, 7251 (2007).CrossRef
110.
Zurück zum Zitat R.U. Islam, M.J. Witcomb, E. van der Lingen, M.S. Scurrell, W. Van Otterlo, and K. Mallick, In-Situ Synthesis of a Palladium-Polyaniline Hybrid Catalyst for a Suzuki Coupling Reaction. J. Organomet. Chem. 696, 2206 (2011).CrossRef R.U. Islam, M.J. Witcomb, E. van der Lingen, M.S. Scurrell, W. Van Otterlo, and K. Mallick, In-Situ Synthesis of a Palladium-Polyaniline Hybrid Catalyst for a Suzuki Coupling Reaction. J. Organomet. Chem. 696, 2206 (2011).CrossRef
111.
Zurück zum Zitat G. Wang, S. Yuan, Z. Wu, W. Liu, H. Zhan, Y. Liang, X. Chen, B. Ma, and S. Bi, Ultra-Low-Loading Palladium Nanoparticles Stabilized on Nanocrystalline Polyaniline (Pd@PANI): A Efficient, Green, and Recyclable Catalyst for the Reduction of Nitroarenes. Appl. Organomet. Chem. 33, e5159 (2019). G. Wang, S. Yuan, Z. Wu, W. Liu, H. Zhan, Y. Liang, X. Chen, B. Ma, and S. Bi, Ultra-Low-Loading Palladium Nanoparticles Stabilized on Nanocrystalline Polyaniline (Pd@PANI): A Efficient, Green, and Recyclable Catalyst for the Reduction of Nitroarenes. Appl. Organomet. Chem. 33, e5159 (2019).
112.
Zurück zum Zitat A. Nyczyk, A. Sniechota, A. Adamczyk, A. Bernasik, W. Turek, and M. Hasik, Investigations of Polyaniline-Platinum Composites Prepared by Sodium Borohydride Reduction. Eur. Polym. J. 44, 1594 (2008).CrossRef A. Nyczyk, A. Sniechota, A. Adamczyk, A. Bernasik, W. Turek, and M. Hasik, Investigations of Polyaniline-Platinum Composites Prepared by Sodium Borohydride Reduction. Eur. Polym. J. 44, 1594 (2008).CrossRef
113.
Zurück zum Zitat K.M. Kost, D.E. Bartak, and Beth. Kazee, and Theodore. Kuwana, Electrodeposition of Platinum Microparticles into Polyaniline Films with Electrocatalytic Applications. Anal. Chem. 60, 2379 (1988).CrossRef K.M. Kost, D.E. Bartak, and Beth. Kazee, and Theodore. Kuwana, Electrodeposition of Platinum Microparticles into Polyaniline Films with Electrocatalytic Applications. Anal. Chem. 60, 2379 (1988).CrossRef
114.
Zurück zum Zitat C.-C. Hu, E. Chen, and J.-Y. Lin, Capacitive and Textural Characteristics of Polyaniline-Platinum Composite Films. Electrochim. Acta 47, 2741 (2002).CrossRef C.-C. Hu, E. Chen, and J.-Y. Lin, Capacitive and Textural Characteristics of Polyaniline-Platinum Composite Films. Electrochim. Acta 47, 2741 (2002).CrossRef
115.
Zurück zum Zitat A.P. O’Mullane, S.E. Dale, J.V. Macpherson, and P.R. Unwin, Fabrication and Electrocatalytic Properties of Polyaniline/Pt Nanoparticle Composites. Chem. Commun. 0, 1606 (2004).CrossRef A.P. O’Mullane, S.E. Dale, J.V. Macpherson, and P.R. Unwin, Fabrication and Electrocatalytic Properties of Polyaniline/Pt Nanoparticle Composites. Chem. Commun. 0, 1606 (2004).CrossRef
116.
Zurück zum Zitat G. Pravin Krishnaa, P. Navaneeth, T. Ramachandran, T.G. Satheesh Babu, and P.V. Suneesh, Fabrication of Polyaniline-Platinum Nanocomposite Based Flexible Supercapacitor. Mater. Today Proc. 33, 2407 (2020).CrossRef G. Pravin Krishnaa, P. Navaneeth, T. Ramachandran, T.G. Satheesh Babu, and P.V. Suneesh, Fabrication of Polyaniline-Platinum Nanocomposite Based Flexible Supercapacitor. Mater. Today Proc. 33, 2407 (2020).CrossRef
117.
Zurück zum Zitat F.-J. Liu, L.-M. Huang, T.-C. Wen, A. Gopalan, and J.-S. Hung, Interfacial Synthesis of Platinum Loaded Polyaniline Nanowires in Poly(Styrene Sulfonic Acid). Mater. Lett. 61, 4400 (2007).CrossRef F.-J. Liu, L.-M. Huang, T.-C. Wen, A. Gopalan, and J.-S. Hung, Interfacial Synthesis of Platinum Loaded Polyaniline Nanowires in Poly(Styrene Sulfonic Acid). Mater. Lett. 61, 4400 (2007).CrossRef
118.
Zurück zum Zitat S. Palmero, A. Colina, E. Muñoz, A. Heras, V. Ruiz, and J. López-Palacios, Layer-by-Layer Electrosynthesis of Pt–Polyaniline Nanocomposites for the Catalytic Oxidation of Methanol. Electrochem. Commun. 11, 122 (2009).CrossRef S. Palmero, A. Colina, E. Muñoz, A. Heras, V. Ruiz, and J. López-Palacios, Layer-by-Layer Electrosynthesis of Pt–Polyaniline Nanocomposites for the Catalytic Oxidation of Methanol. Electrochem. Commun. 11, 122 (2009).CrossRef
119.
Zurück zum Zitat L. Zheng, and J. Li, Platinum-Polyaniline Nanofilms Synthesized at a Liquid|liquid Interface with Enhanced Conductivity. J. Electroanal. Chem. 577, 137 (2005).CrossRef L. Zheng, and J. Li, Platinum-Polyaniline Nanofilms Synthesized at a Liquid|liquid Interface with Enhanced Conductivity. J. Electroanal. Chem. 577, 137 (2005).CrossRef
120.
Zurück zum Zitat K. Naseem, R. Begum, W. Wu, A. Irfan, and Z.H. Farooqi, Advancement in Multi-Functional Poly(Styrene)-Poly(N-Isopropylacrylamide) Based Core-Shell Microgels and Their Applications. Polym. Rev. 58, 288 (2018).CrossRef K. Naseem, R. Begum, W. Wu, A. Irfan, and Z.H. Farooqi, Advancement in Multi-Functional Poly(Styrene)-Poly(N-Isopropylacrylamide) Based Core-Shell Microgels and Their Applications. Polym. Rev. 58, 288 (2018).CrossRef
121.
Zurück zum Zitat R.K. Pandey, and V. Lakshminarayanan, Ethanol Electrocatalysis on Gold and Conducting Polymer Nanocomposites: A Study of the Kinetic Parameters. Appl. Catal. B Environ. 125, 271 (2012).CrossRef R.K. Pandey, and V. Lakshminarayanan, Ethanol Electrocatalysis on Gold and Conducting Polymer Nanocomposites: A Study of the Kinetic Parameters. Appl. Catal. B Environ. 125, 271 (2012).CrossRef
122.
Zurück zum Zitat M. Jana Chatterjee, A. Ghosh, A. Mondal, and D. Banerjee, Polyaniline-Single Walled Carbon Nanotube Composite—a Photocatalyst to Degrade Rose Bengal and Methyl Orange Dyes under Visible-Light Illumination. RSC Adv. 7, 36403 (2017).CrossRef M. Jana Chatterjee, A. Ghosh, A. Mondal, and D. Banerjee, Polyaniline-Single Walled Carbon Nanotube Composite—a Photocatalyst to Degrade Rose Bengal and Methyl Orange Dyes under Visible-Light Illumination. RSC Adv. 7, 36403 (2017).CrossRef
123.
Zurück zum Zitat R. Li, Z. Li, Q. Wu, D. Li, J. Shi, Y. Chen, S. Yu, T. Ding, and C. Qiao, One-Step Synthesis of Monodisperse AuNPs@PANI Composite Nanospheres as Recyclable Catalysts for 4-Nitrophenol Reduction. J. Nanoparticle Res. 18, 142 (2016).CrossRef R. Li, Z. Li, Q. Wu, D. Li, J. Shi, Y. Chen, S. Yu, T. Ding, and C. Qiao, One-Step Synthesis of Monodisperse AuNPs@PANI Composite Nanospheres as Recyclable Catalysts for 4-Nitrophenol Reduction. J. Nanoparticle Res. 18, 142 (2016).CrossRef
124.
Zurück zum Zitat H. Lin, J. Yang, J. Liu, Y. Huang, J. Xiao, and X. Zhang, Properties of Pd Nanoparticles-Embedded Polyaniline Multilayer Film and Its Electrocatalytic Activity for Hydrazine Oxidation. Electrochim. Acta 90, 382 (2013).CrossRef H. Lin, J. Yang, J. Liu, Y. Huang, J. Xiao, and X. Zhang, Properties of Pd Nanoparticles-Embedded Polyaniline Multilayer Film and Its Electrocatalytic Activity for Hydrazine Oxidation. Electrochim. Acta 90, 382 (2013).CrossRef
125.
Zurück zum Zitat F.-J. Liu, L.-M. Huang, T.-C. Wen, and A. Gopalan, Large-Area Network of Polyaniline Nanowires Supported Platinum Nanocatalysts for Methanol Oxidation. Synth. Met. 157, 651 (2007).CrossRef F.-J. Liu, L.-M. Huang, T.-C. Wen, and A. Gopalan, Large-Area Network of Polyaniline Nanowires Supported Platinum Nanocatalysts for Methanol Oxidation. Synth. Met. 157, 651 (2007).CrossRef
126.
Zurück zum Zitat P. Paulraj, N. Janaki, S. Sandhya, and K. Pandian, Single Pot Synthesis of Polyaniline Protected Silver Nanoparticles by Interfacial Polymerization and Study Its Application on Electrochemical Oxidation of Hydrazine. Colloids Surf. Physicochem. Eng. Asp. 377, 28 (2011).CrossRef P. Paulraj, N. Janaki, S. Sandhya, and K. Pandian, Single Pot Synthesis of Polyaniline Protected Silver Nanoparticles by Interfacial Polymerization and Study Its Application on Electrochemical Oxidation of Hydrazine. Colloids Surf. Physicochem. Eng. Asp. 377, 28 (2011).CrossRef
127.
Zurück zum Zitat Y. Zhang, J. Yin, K. Wang, P. Chen, and L. Ji, Electrocatalysis and Detection of Nitrite on a Polyaniline-Cu Nanocomposite-Modified Glassy Carbon Electrode. J. Appl. Polym. Sci. 128, 2971 (2013).CrossRef Y. Zhang, J. Yin, K. Wang, P. Chen, and L. Ji, Electrocatalysis and Detection of Nitrite on a Polyaniline-Cu Nanocomposite-Modified Glassy Carbon Electrode. J. Appl. Polym. Sci. 128, 2971 (2013).CrossRef
128.
Zurück zum Zitat M.J. Chatterjee, S.T. Ahamed, M. Mitra, C. Kulsi, A. Mondal, and D. Banerjee, Visible-Light Influenced Photocatalytic Activity of Polyaniline -Bismuth Selenide Composites for the Degradation of Methyl Orange, Rhodamine B and Malachite Green Dyes. Appl. Surf. Sci. 470, 472 (2019).CrossRef M.J. Chatterjee, S.T. Ahamed, M. Mitra, C. Kulsi, A. Mondal, and D. Banerjee, Visible-Light Influenced Photocatalytic Activity of Polyaniline -Bismuth Selenide Composites for the Degradation of Methyl Orange, Rhodamine B and Malachite Green Dyes. Appl. Surf. Sci. 470, 472 (2019).CrossRef
129.
Zurück zum Zitat S. Pandey, J.Y. Do, J. Kim, and M. Kang, Fast and Highly Efficient Catalytic Degradation of Dyes Using κ-Carrageenan Stabilized Silver Nanoparticles Nanocatalyst. Carbohydr. Polym. 230, 115597 (2020).CrossRef S. Pandey, J.Y. Do, J. Kim, and M. Kang, Fast and Highly Efficient Catalytic Degradation of Dyes Using κ-Carrageenan Stabilized Silver Nanoparticles Nanocatalyst. Carbohydr. Polym. 230, 115597 (2020).CrossRef
130.
Zurück zum Zitat K. Naseem, R. Begum, W. Wu, A. Irfan, A.G. Al-Sehemi, and Z.H. Farooqi, Catalytic Reduction of Toxic Dyes in the Presence of Silver Nanoparticles Impregnated Core-Shell Composite Microgels. J. Clean. Prod. 211, 855 (2019).CrossRef K. Naseem, R. Begum, W. Wu, A. Irfan, A.G. Al-Sehemi, and Z.H. Farooqi, Catalytic Reduction of Toxic Dyes in the Presence of Silver Nanoparticles Impregnated Core-Shell Composite Microgels. J. Clean. Prod. 211, 855 (2019).CrossRef
131.
Zurück zum Zitat B.A. AlMashrea, F. Abla, M.M. Chehimi, B. Workie, C. Han, and A.A. Mohamed, Polyaniline Coated Gold-Aryl Nanoparticles: Electrochemical Synthesis and Efficiency in Methylene Blue Dye Removal. Synth. Met. 269, 116528 (2020).CrossRef B.A. AlMashrea, F. Abla, M.M. Chehimi, B. Workie, C. Han, and A.A. Mohamed, Polyaniline Coated Gold-Aryl Nanoparticles: Electrochemical Synthesis and Efficiency in Methylene Blue Dye Removal. Synth. Met. 269, 116528 (2020).CrossRef
132.
Zurück zum Zitat T. Zhang, J. Zhang, D. Zou, F. Cheng, and R. Su, A Promising Pd/Polyaniline/Foam Nickel Composite Electrode for Effectively. Desalin. Water Treat. 9, 386 (2020).CrossRef T. Zhang, J. Zhang, D. Zou, F. Cheng, and R. Su, A Promising Pd/Polyaniline/Foam Nickel Composite Electrode for Effectively. Desalin. Water Treat. 9, 386 (2020).CrossRef
133.
Zurück zum Zitat S. Shahabuddin, N. Muhamad Sarih, S. Mohamad, and J. Joon Ching, SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light. Polymers 8, 2 (2016). S. Shahabuddin, N. Muhamad Sarih, S. Mohamad, and J. Joon Ching, SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light. Polymers 8, 2 (2016).
134.
Zurück zum Zitat M. Elbuzedi, C. Uzun, S. Tirkeş, and M. Kaya, Investigation of the Photocatalytic Behavior of Silver Nanoparticles Added Polyaniline Composite Material. IOSR-JAC 12, 45 (2019). M. Elbuzedi, C. Uzun, S. Tirkeş, and M. Kaya, Investigation of the Photocatalytic Behavior of Silver Nanoparticles Added Polyaniline Composite Material. IOSR-JAC 12, 45 (2019).
135.
Zurück zum Zitat G. Liao, Y. Gong, L. Zhong, J. Fang, L. Zhang, Z. Xu, H. Gao, and B. Fang, Unlocking the Door to Highly Efficient Ag-Based Nanoparticles Catalysts for NaBH4-Assisted Nitrophenol Reduction. Nano Res. 12, 2407 (2019).CrossRef G. Liao, Y. Gong, L. Zhong, J. Fang, L. Zhang, Z. Xu, H. Gao, and B. Fang, Unlocking the Door to Highly Efficient Ag-Based Nanoparticles Catalysts for NaBH4-Assisted Nitrophenol Reduction. Nano Res. 12, 2407 (2019).CrossRef
136.
Zurück zum Zitat M.M. Ayad, W.A. Amer, S. Zaghlol, N. Maráková, and J. Stejskal, Polypyrrole-Coated Cotton Fabric Decorated with Silver Nanoparticles for the Catalytic Removal of p-Nitrophenol from Water. Cellulose 25, 7393 (2018).CrossRef M.M. Ayad, W.A. Amer, S. Zaghlol, N. Maráková, and J. Stejskal, Polypyrrole-Coated Cotton Fabric Decorated with Silver Nanoparticles for the Catalytic Removal of p-Nitrophenol from Water. Cellulose 25, 7393 (2018).CrossRef
137.
Zurück zum Zitat S. Mohan Botsa, Y. Pavan Kumar, and K. Basavaiah, Facile Simultaneous Synthesis of Tetraaniline Nanostructures/Silver Nanoparticles as Heterogeneous Catalyst for the Efficient Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol. RSC Adv. 10, 22043 (2020).CrossRef S. Mohan Botsa, Y. Pavan Kumar, and K. Basavaiah, Facile Simultaneous Synthesis of Tetraaniline Nanostructures/Silver Nanoparticles as Heterogeneous Catalyst for the Efficient Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol. RSC Adv. 10, 22043 (2020).CrossRef
138.
Zurück zum Zitat L. Sun, L. Jiang, J. Zhang, T. Murayama, M. Zhang, Y. Zheng, H. Su, and C. Qi, Preparation of Polyaniline Microtubes as the Gold Catalyst Support with Improved Catalytic Performances for the Reduction of Nitrophenols. Top. Catal. 64, 215 (2021).CrossRef L. Sun, L. Jiang, J. Zhang, T. Murayama, M. Zhang, Y. Zheng, H. Su, and C. Qi, Preparation of Polyaniline Microtubes as the Gold Catalyst Support with Improved Catalytic Performances for the Reduction of Nitrophenols. Top. Catal. 64, 215 (2021).CrossRef
139.
Zurück zum Zitat L. Sun, S. Peng, L. Jiang, Y. Zheng, X. Sun, H. Su, and C. Qi, Preparation of Spindle-Shaped Polyaniline Supported Au Catalysts with Enhanced Catalytic Reduction of 4-Nitrophenol. Colloid Polym. Sci. 297, 651 (2019).CrossRef L. Sun, S. Peng, L. Jiang, Y. Zheng, X. Sun, H. Su, and C. Qi, Preparation of Spindle-Shaped Polyaniline Supported Au Catalysts with Enhanced Catalytic Reduction of 4-Nitrophenol. Colloid Polym. Sci. 297, 651 (2019).CrossRef
140.
Zurück zum Zitat S. Bao, M. Zhang, M. Du, H. Zhu, and P. Wang, Synthesis and Catalytic Properties of Polyaniline/Au Hybrid Nanostructure. Soft Mater. 12, 179 (2014).CrossRef S. Bao, M. Zhang, M. Du, H. Zhu, and P. Wang, Synthesis and Catalytic Properties of Polyaniline/Au Hybrid Nanostructure. Soft Mater. 12, 179 (2014).CrossRef
141.
Zurück zum Zitat W.M. Lemke, R.B. Kaner, and P.L. Diaconescu, A Mechanistic Study of Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles Supported on Polyaniline Nanofibers. Inorg. Chem. Front. 2, 35 (2015).CrossRef W.M. Lemke, R.B. Kaner, and P.L. Diaconescu, A Mechanistic Study of Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles Supported on Polyaniline Nanofibers. Inorg. Chem. Front. 2, 35 (2015).CrossRef
142.
Zurück zum Zitat G. Wang, Z. Wu, Y. Liang, W. Liu, H. Zhan, M. Song, and Y. Sun, Exploring the Coordination Confinement Effect of Divalent Palladium/Zero Palladium Doped Polyaniline-Networking: As an Excellent-Performance Nanocomposite Catalyst for C-C Coupling Reactions. J. Catal. 384, 177 (2020).CrossRef G. Wang, Z. Wu, Y. Liang, W. Liu, H. Zhan, M. Song, and Y. Sun, Exploring the Coordination Confinement Effect of Divalent Palladium/Zero Palladium Doped Polyaniline-Networking: As an Excellent-Performance Nanocomposite Catalyst for C-C Coupling Reactions. J. Catal. 384, 177 (2020).CrossRef
143.
Zurück zum Zitat I.W. Davies, L. Matty, D.L. Hughes, and P.J. Reider, Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? J. Am. Chem. Soc. 123, 10139 (2001).CrossRef I.W. Davies, L. Matty, D.L. Hughes, and P.J. Reider, Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? J. Am. Chem. Soc. 123, 10139 (2001).CrossRef
144.
Zurück zum Zitat F. Zhao, M. Shirai, Y. Ikushima, and M. Arai, The Leaching and Re-Deposition of Metal Species from and onto Conventional Supported Palladium Catalysts in the Heck Reaction of Iodobenzene and Methyl Acrylate in N-Methylpyrrolidone. J. Mol. Catal. Chem. 180, 211 (2002).CrossRef F. Zhao, M. Shirai, Y. Ikushima, and M. Arai, The Leaching and Re-Deposition of Metal Species from and onto Conventional Supported Palladium Catalysts in the Heck Reaction of Iodobenzene and Methyl Acrylate in N-Methylpyrrolidone. J. Mol. Catal. Chem. 180, 211 (2002).CrossRef
145.
Zurück zum Zitat M.B. Thathagar, P.J. Kooyman, R. Boerleider, E. Jansen, C.J. Elsevier, and G. Rothenberg, Palladium Nanoclusters in Sonogashira Cross-Coupling: A True Catalytic Species? Adv. Synth. Catal. 347, 1965 (2005).CrossRef M.B. Thathagar, P.J. Kooyman, R. Boerleider, E. Jansen, C.J. Elsevier, and G. Rothenberg, Palladium Nanoclusters in Sonogashira Cross-Coupling: A True Catalytic Species? Adv. Synth. Catal. 347, 1965 (2005).CrossRef
146.
Zurück zum Zitat R. Ul Islam, M.J. Witcomb, M.S. Scurrell, E. van der Lingen, W.V. Otterlo, and K. Mallick, Conjugated Polymer Stabilized Palladium Nanoparticles as a Versatile Catalyst for Suzuki Cross-Coupling Reactions for Both Aryl and Heteroaryl Bromide Systems. Catal. Sci. Technol. 1, 308 (2011).CrossRef R. Ul Islam, M.J. Witcomb, M.S. Scurrell, E. van der Lingen, W.V. Otterlo, and K. Mallick, Conjugated Polymer Stabilized Palladium Nanoparticles as a Versatile Catalyst for Suzuki Cross-Coupling Reactions for Both Aryl and Heteroaryl Bromide Systems. Catal. Sci. Technol. 1, 308 (2011).CrossRef
147.
Zurück zum Zitat B. Karimi, H. Behzadnia, E. Farhangi, E. Jafari, and A. Zamani, Recent Application of Polymer Supported Metal Nanoparticles in Heck, Suzuki and Sonogashira Coupling Reactions. Curr. Org. Synth. 7, 543 (2010).CrossRef B. Karimi, H. Behzadnia, E. Farhangi, E. Jafari, and A. Zamani, Recent Application of Polymer Supported Metal Nanoparticles in Heck, Suzuki and Sonogashira Coupling Reactions. Curr. Org. Synth. 7, 543 (2010).CrossRef
148.
Zurück zum Zitat M.L. Kantam, M. Roy, S. Roy, B. Sreedhar, S.S. Madhavendra, B.M. Choudary, and R.L. De, Polyaniline Supported Palladium Catalyzed Suzuki-Miyaura Cross-Coupling of Bromo- and Chloroarenes in Water. Tetrahedron 63, 8002 (2007).CrossRef M.L. Kantam, M. Roy, S. Roy, B. Sreedhar, S.S. Madhavendra, B.M. Choudary, and R.L. De, Polyaniline Supported Palladium Catalyzed Suzuki-Miyaura Cross-Coupling of Bromo- and Chloroarenes in Water. Tetrahedron 63, 8002 (2007).CrossRef
149.
Zurück zum Zitat B.M. Choudary, M. Roy, S. Roy, M.L. Kantam, B. Sreedhar, and K.V. Kumar, Preparation, Characterization and Catalytic Properties of Polyaniline-Supported Metal Complexes. Adv. Synth. Catal. 348, 1734 (2006).CrossRef B.M. Choudary, M. Roy, S. Roy, M.L. Kantam, B. Sreedhar, and K.V. Kumar, Preparation, Characterization and Catalytic Properties of Polyaniline-Supported Metal Complexes. Adv. Synth. Catal. 348, 1734 (2006).CrossRef
150.
Zurück zum Zitat Y. Liu, D. Tang, K. Cao, L. Yu, J. Han, and Q. Xu, Probing the Support Effect at the Molecular Level in the Polyaniline-Supported Palladium Nanoparticle-Catalyzed Ullmann Reaction of Aryl Iodides. J. Catal. 360, 250 (2018).CrossRef Y. Liu, D. Tang, K. Cao, L. Yu, J. Han, and Q. Xu, Probing the Support Effect at the Molecular Level in the Polyaniline-Supported Palladium Nanoparticle-Catalyzed Ullmann Reaction of Aryl Iodides. J. Catal. 360, 250 (2018).CrossRef
151.
Zurück zum Zitat M. Chetia, M. Konwar, B. Pegu, S. Konwer, and D. Sarma, Synthesis of Copper Containing Polyaniline Composites through Interfacial Polymerisation: An Effective Catalyst for Click Reaction at Room Temperature. J. Mol. Struct. 1233, 130019 (2021).CrossRef M. Chetia, M. Konwar, B. Pegu, S. Konwer, and D. Sarma, Synthesis of Copper Containing Polyaniline Composites through Interfacial Polymerisation: An Effective Catalyst for Click Reaction at Room Temperature. J. Mol. Struct. 1233, 130019 (2021).CrossRef
152.
Zurück zum Zitat R.U. Islam, A. Taher, M. Choudhary, S. Siwal, and K. Mallick, Polymer Immobilized Cu(I) Formation and Azide-Alkyne Cycloaddition: A One Potreaction. Sci. Rep. 5, 9632 (2015).CrossRef R.U. Islam, A. Taher, M. Choudhary, S. Siwal, and K. Mallick, Polymer Immobilized Cu(I) Formation and Azide-Alkyne Cycloaddition: A One Potreaction. Sci. Rep. 5, 9632 (2015).CrossRef
153.
Zurück zum Zitat F.-J. Liu, L.-M. Huang, T.-C. Wen, K.-C. Yin, J.-S. Hung, and A. Gopalan, Composite Electrodes Consisting of Platinum Particles and Polyaniline Nanowires as Electrocatalysts for Methanol Oxidation. Polym. Compos. 28, 650 (2007).CrossRef F.-J. Liu, L.-M. Huang, T.-C. Wen, K.-C. Yin, J.-S. Hung, and A. Gopalan, Composite Electrodes Consisting of Platinum Particles and Polyaniline Nanowires as Electrocatalysts for Methanol Oxidation. Polym. Compos. 28, 650 (2007).CrossRef
154.
Zurück zum Zitat U. Mandi, M. Pramanik, A.S. Roy, N. Salam, A. Bhaumik, and S. Manirul Islam, Chromium( vi ) Grafted Mesoporous Polyaniline as a Reusable Heterogeneous Catalyst for Oxidation Reactions in Aqueous Medium. RSC Adv. 4, 15431 (2014).CrossRef U. Mandi, M. Pramanik, A.S. Roy, N. Salam, A. Bhaumik, and S. Manirul Islam, Chromium( vi ) Grafted Mesoporous Polyaniline as a Reusable Heterogeneous Catalyst for Oxidation Reactions in Aqueous Medium. RSC Adv. 4, 15431 (2014).CrossRef
155.
Zurück zum Zitat X. Wei, Z. Yin, K. Lyu, Z. Li, J. Gong, G. Wang, L. Xiao, J. Lu, and L. Zhuang, Highly Selective Reduction of CO2 to C2+ Hydrocarbons at Copper/Polyaniline Interfaces. ACS Catal. 10, 4103 (2020).CrossRef X. Wei, Z. Yin, K. Lyu, Z. Li, J. Gong, G. Wang, L. Xiao, J. Lu, and L. Zhuang, Highly Selective Reduction of CO2 to C2+ Hydrocarbons at Copper/Polyaniline Interfaces. ACS Catal. 10, 4103 (2020).CrossRef
156.
Zurück zum Zitat M. Hosseini, M.M. Momeni, and M. Faraji, Electrochemical Fabrication of Polyaniline Films Containing Gold Nanoparticles Deposited on Titanium Electrode for Electro-Oxidation of Ascorbic Acid. J. Mater. Sci. 45, 2365 (2010).CrossRef M. Hosseini, M.M. Momeni, and M. Faraji, Electrochemical Fabrication of Polyaniline Films Containing Gold Nanoparticles Deposited on Titanium Electrode for Electro-Oxidation of Ascorbic Acid. J. Mater. Sci. 45, 2365 (2010).CrossRef
157.
Zurück zum Zitat R.-C. Zhang, D. Sun, R. Zhang, W.-F. Lin, M. Macias-Montero, J. Patel, S. Askari, C. McDonald, D. Mariotti, and P. Maguire, Gold Nanoparticle-Polymer Nanocomposites Synthesized by Room Temperature Atmospheric Pressure Plasma and Their Potential for Fuel Cell Electrocatalytic Application. Sci. Rep. 7, 46682 (2017).CrossRef R.-C. Zhang, D. Sun, R. Zhang, W.-F. Lin, M. Macias-Montero, J. Patel, S. Askari, C. McDonald, D. Mariotti, and P. Maguire, Gold Nanoparticle-Polymer Nanocomposites Synthesized by Room Temperature Atmospheric Pressure Plasma and Their Potential for Fuel Cell Electrocatalytic Application. Sci. Rep. 7, 46682 (2017).CrossRef
158.
Zurück zum Zitat R. Yan, B. Jin, D. Li, J. Zheng, Y. Li, and C. Qian, One-Step Electrochemically Co-Deposited Pt Nanoparticles/Polyaniline Composites with Raspberry Structures for Methanol Electro-Oxidation. Synth. Met. 235, 110 (2018).CrossRef R. Yan, B. Jin, D. Li, J. Zheng, Y. Li, and C. Qian, One-Step Electrochemically Co-Deposited Pt Nanoparticles/Polyaniline Composites with Raspberry Structures for Methanol Electro-Oxidation. Synth. Met. 235, 110 (2018).CrossRef
159.
Zurück zum Zitat F. Fiçiçioğlu, and F. Kadirgan, Electrooxidation of Methanol on Platinum Doped Polyaniline Electrodes: Deposition Potential and Temperature Effect. J. Electroanal. Chem. 430, 179 (1997).CrossRef F. Fiçiçioğlu, and F. Kadirgan, Electrooxidation of Methanol on Platinum Doped Polyaniline Electrodes: Deposition Potential and Temperature Effect. J. Electroanal. Chem. 430, 179 (1997).CrossRef
160.
Zurück zum Zitat R.K. Pandey, and V. Lakshminarayanan, Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium. J. Phys. Chem. C 113, 21596 (2009).CrossRef R.K. Pandey, and V. Lakshminarayanan, Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium. J. Phys. Chem. C 113, 21596 (2009).CrossRef
161.
Zurück zum Zitat H. Laborde, J.-M. Lger, and C. Lamy, Electrocatalytic Oxidation of Methanol and C1 Molecules on Highly Dispersed Electrodes Part 1: Platinum in Polyaniline. J. Appl. Electrochem. 24 (1994). H. Laborde, J.-M. Lger, and C. Lamy, Electrocatalytic Oxidation of Methanol and C1 Molecules on Highly Dispersed Electrodes Part 1: Platinum in Polyaniline. J. Appl. Electrochem. 24 (1994).
162.
Zurück zum Zitat M.U.A. Prathap, T. Pandiyan, and R. Srivastava, Cu Nanoparticles Supported Mesoporous Polyaniline and Its Applications towards Non-Enzymatic Sensing of Glucose and Electrocatalytic Oxidation of Methanol. J. Polym. Res. 20, 83 (2013).CrossRef M.U.A. Prathap, T. Pandiyan, and R. Srivastava, Cu Nanoparticles Supported Mesoporous Polyaniline and Its Applications towards Non-Enzymatic Sensing of Glucose and Electrocatalytic Oxidation of Methanol. J. Polym. Res. 20, 83 (2013).CrossRef
163.
Zurück zum Zitat J. Kim, H. Ju, A.I. Inamdar, Y. Jo, J. Han, H. Kim, and H. Im, Synthesis and Enhanced Electrochemical Supercapacitor Properties of Ag–MnO2–Polyaniline Nanocomposite Electrodes. Energy 70, 473 (2014).CrossRef J. Kim, H. Ju, A.I. Inamdar, Y. Jo, J. Han, H. Kim, and H. Im, Synthesis and Enhanced Electrochemical Supercapacitor Properties of Ag–MnO2–Polyaniline Nanocomposite Electrodes. Energy 70, 473 (2014).CrossRef
164.
Zurück zum Zitat M. Sawangphruk, M. Suksomboon, K. Kongsupornsak, J. Khuntilo, P. Srimuk, Y. Sanguansak, P. Klunbud, P. Suktha, and P. Chiochan, High-Performance Supercapacitors Based on Silver Nanoparticle –Polyaniline– Graphene Nanocomposites Coated on Flexible Carbon Fiber Paper. J. Mater. Chem. A 1, 9630 (2013).CrossRef M. Sawangphruk, M. Suksomboon, K. Kongsupornsak, J. Khuntilo, P. Srimuk, Y. Sanguansak, P. Klunbud, P. Suktha, and P. Chiochan, High-Performance Supercapacitors Based on Silver Nanoparticle –Polyaniline– Graphene Nanocomposites Coated on Flexible Carbon Fiber Paper. J. Mater. Chem. A 1, 9630 (2013).CrossRef
165.
Zurück zum Zitat K.-U. Lee, J.Y. Byun, H.-J. Shin, and S.H. Kim, A High-Performance Supercapacitor Based on Polyaniline-Nanoporous Gold. J. Alloys Compd. 779, 74 (2019).CrossRef K.-U. Lee, J.Y. Byun, H.-J. Shin, and S.H. Kim, A High-Performance Supercapacitor Based on Polyaniline-Nanoporous Gold. J. Alloys Compd. 779, 74 (2019).CrossRef
166.
Zurück zum Zitat M. Usman, L. Pan, M. Asif, Z. Mahmood, M.A. Khan, and X. Fu, Enhanced Electrochemical Supercapacitor Properties with Synergistic Effect of Polyaniline, Graphene and AgxO. Appl. Surf. Sci. 370, 297 (2016).CrossRef M. Usman, L. Pan, M. Asif, Z. Mahmood, M.A. Khan, and X. Fu, Enhanced Electrochemical Supercapacitor Properties with Synergistic Effect of Polyaniline, Graphene and AgxO. Appl. Surf. Sci. 370, 297 (2016).CrossRef
167.
Zurück zum Zitat B. Ballarin et al., PANI/Au/Fe3O4 Nanocomposite Materials for High Performance Energy Storage. Electrochim. Acta 322, 134707 (2019).CrossRef B. Ballarin et al., PANI/Au/Fe3O4 Nanocomposite Materials for High Performance Energy Storage. Electrochim. Acta 322, 134707 (2019).CrossRef
168.
Zurück zum Zitat M.B. Poudel, M. Shin, and H.J. Kim, Polyaniline-Silver-Manganese Dioxide Nanorod Ternary Composite for Asymmetric Supercapacitor with Remarkable Electrochemical Performance. Int. J. Hydrog. Energy 46, 474 (2021).CrossRef M.B. Poudel, M. Shin, and H.J. Kim, Polyaniline-Silver-Manganese Dioxide Nanorod Ternary Composite for Asymmetric Supercapacitor with Remarkable Electrochemical Performance. Int. J. Hydrog. Energy 46, 474 (2021).CrossRef
169.
Zurück zum Zitat R.S. Diggikar, S.P. Deshmukh, T.S. Thopate, and S.R. Kshirsagar, Performance of Polyaniline Nanofibers (PANI NFs) as PANI NFs-Silver (Ag) Nanocomposites (NCs) for Energy Storage and Antibacterial Applications. ACS Omega 4, 5741 (2019).CrossRef R.S. Diggikar, S.P. Deshmukh, T.S. Thopate, and S.R. Kshirsagar, Performance of Polyaniline Nanofibers (PANI NFs) as PANI NFs-Silver (Ag) Nanocomposites (NCs) for Energy Storage and Antibacterial Applications. ACS Omega 4, 5741 (2019).CrossRef
170.
Zurück zum Zitat C. Wang, K. Zhang, H. Xu, Y. Du, and M.C. Goh, Anchoring Gold Nanoparticles on Poly(3,4-Ethylenedioxythiophene) (PEDOT) Nanonet as Three-Dimensional Electrocatalysts toward Ethanol and 2-Propanol Oxidation. J. Colloid Interface Sci. 541, 258 (2019).CrossRef C. Wang, K. Zhang, H. Xu, Y. Du, and M.C. Goh, Anchoring Gold Nanoparticles on Poly(3,4-Ethylenedioxythiophene) (PEDOT) Nanonet as Three-Dimensional Electrocatalysts toward Ethanol and 2-Propanol Oxidation. J. Colloid Interface Sci. 541, 258 (2019).CrossRef
171.
Zurück zum Zitat K.E. Hnida, R.P. Socha, and G.D. Sulka, Polypyrrole-Silver Composite Nanowire Arrays by Cathodic Co-Deposition and Their Electrochemical Properties. J. Phys. Chem. C 117, 19382 (2013). K.E. Hnida, R.P. Socha, and G.D. Sulka, Polypyrrole-Silver Composite Nanowire Arrays by Cathodic Co-Deposition and Their Electrochemical Properties. J. Phys. Chem. C 117, 19382 (2013).
172.
Zurück zum Zitat F. Liu, Y. Yuan, L. Li, S. Shang, X. Yu, Q. Zhang, S. Jiang, and Y. Wu, Synthesis of Polypyrrole Nanocomposites Decorated with Silver Nanoparticles with Electrocatalysis and Antibacterial Property. Compos. Part B Eng. 69, 232 (2015).CrossRef F. Liu, Y. Yuan, L. Li, S. Shang, X. Yu, Q. Zhang, S. Jiang, and Y. Wu, Synthesis of Polypyrrole Nanocomposites Decorated with Silver Nanoparticles with Electrocatalysis and Antibacterial Property. Compos. Part B Eng. 69, 232 (2015).CrossRef
173.
Zurück zum Zitat K.V. Gorkov, N.V. Talagaeva, S.A. Kleinikova, N.N. Dremova, M.A. Vorotyntsev, and E.V. Zolotukhina, Palladium-Polypyrrole Composites as Prospective Catalysts for Formaldehyde Electrooxidation in Alkaline Solutions. Electrochimica Acta 345, 136164 (2020).CrossRef K.V. Gorkov, N.V. Talagaeva, S.A. Kleinikova, N.N. Dremova, M.A. Vorotyntsev, and E.V. Zolotukhina, Palladium-Polypyrrole Composites as Prospective Catalysts for Formaldehyde Electrooxidation in Alkaline Solutions. Electrochimica Acta 345, 136164 (2020).CrossRef
174.
Zurück zum Zitat I. Sapurina, J. Stejskal, I. Šeděnková, M. Trchová, J. Kovářová, J. Hromádková, J. Kopecká, M. Cieslar, A. Abu El-Nasr, and M.M. Ayad, Catalytic Activity of Polypyrrole Nanotubes Decorated with Noble-Metal Nanoparticles and Their Conversion to Carbonized Analogues. Synth. Met. 214, 14 (2016).CrossRef I. Sapurina, J. Stejskal, I. Šeděnková, M. Trchová, J. Kovářová, J. Hromádková, J. Kopecká, M. Cieslar, A. Abu El-Nasr, and M.M. Ayad, Catalytic Activity of Polypyrrole Nanotubes Decorated with Noble-Metal Nanoparticles and Their Conversion to Carbonized Analogues. Synth. Met. 214, 14 (2016).CrossRef
175.
Zurück zum Zitat J. Kevin Gan, Y. Seng Lim, N. Ming Huang, and H. Ngee Lim, Hybrid Silver Nanoparticle/Nanocluster-Decorated Polypyrrole for High-Performance Supercapacitors. RSC Adv. 5, 75442 (2015).CrossRef J. Kevin Gan, Y. Seng Lim, N. Ming Huang, and H. Ngee Lim, Hybrid Silver Nanoparticle/Nanocluster-Decorated Polypyrrole for High-Performance Supercapacitors. RSC Adv. 5, 75442 (2015).CrossRef
176.
Zurück zum Zitat S. Dhibar and C. K. Das, Silver Nanoparticles Decorated Polypyrrole/Graphene Nanocomposite: A Potential Candidate for next-Generation Supercapacitor Electrode Material. J. Appl. Polym. Sci. 134 (2017). S. Dhibar and C. K. Das, Silver Nanoparticles Decorated Polypyrrole/Graphene Nanocomposite: A Potential Candidate for next-Generation Supercapacitor Electrode Material. J. Appl. Polym. Sci. 134 (2017).
177.
Zurück zum Zitat L. Yuan, C. Wan, X. Ye, and F. Wu, Facial Synthesis of Silver-Incorporated Conductive Polypyrrole Submicron Spheres for Supercapacitors. Electrochim. Acta 213, 115 (2016).CrossRef L. Yuan, C. Wan, X. Ye, and F. Wu, Facial Synthesis of Silver-Incorporated Conductive Polypyrrole Submicron Spheres for Supercapacitors. Electrochim. Acta 213, 115 (2016).CrossRef
178.
Zurück zum Zitat B.M. Hryniewicz, I.C. Gil, and M. Vidotti, Enhancement of Polypyrrole Nanotubes Stability by Gold Nanoparticles for the Construction of Flexible Solid-State Supercapacitors. J. Electroanal. Chem. 911, 116212 (2022).CrossRef B.M. Hryniewicz, I.C. Gil, and M. Vidotti, Enhancement of Polypyrrole Nanotubes Stability by Gold Nanoparticles for the Construction of Flexible Solid-State Supercapacitors. J. Electroanal. Chem. 911, 116212 (2022).CrossRef
Metadaten
Titel
Catalytic and Energy Storage Applications of Metal/Polyaniline Nanocomposites: A Critical Review
verfasst von
Hilda Dinah Kyomuhimbo
Usisipho Feleni
Publikationsdatum
12.08.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 10/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09848-5

Weitere Artikel der Ausgabe 10/2022

Journal of Electronic Materials 10/2022 Zur Ausgabe

Neuer Inhalt