Skip to main content
Erschienen in: Microsystem Technologies 10/2019

18.03.2019 | Technical Paper

Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices

verfasst von: S. R. Mahmoodi, P.-K. Sun, M. Mayer, R. S. Besser

Erschienen in: Microsystem Technologies | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The challenges for high-strength adhesive-free sealing of thermoplastic microfluidics have impeded commercialization. We present the technique of gas-assisted thermal bonding (GATB) for joining thermoplastic surfaces at elevated temperatures to produce microfluidic devices with low distortion. In this technique a pressurized gas is used to supply the force to bond the two substrates rather than relying on direct contact of thermoplastics with a rigid press. Mechanical characterization tests were performed to analyze and optimize the effect of GATB pressure and temperature on the bonding strength of laminated polymethyl-methacrylate (PMMA) membranes. Tensile tests on PMMA membranes subjected to GATB process conditions examined the effects of these conditions on the single membrane’s characteristics. Adhesive strength was assessed on thin PMMA strips bonded together by GATB in lap shear and T-peel test configurations. The maximum lap shear and peel strength were found to occur at the lowest tested pressure of 1.17 MPa based on bonding experiments at 160 °C and 180 °C, respectively. Thereafter, the GATB is compared with the conventional plate-to-plate method to bond a capping sheet on pre-fabricated microchannels. Channel deformation is quantified by cross-section imaging before and after the sealing experiments. It was found that GATB enables low-distortion microchannels with higher uniformity at elevated temperatures, providing a solution for adhesive-free manufacturing of thermoplastic-based microfluidic systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ballarin FM, Blackledge TA, Davis C, Nicole L, Frontini PM, Abraham GA, Wong SC (2013) Effect of topology on the adhesive forces between electrospun polymer fibers using a T-peel test. Polym Eng Sci 53(10):2219–2227 Ballarin FM, Blackledge TA, Davis C, Nicole L, Frontini PM, Abraham GA, Wong SC (2013) Effect of topology on the adhesive forces between electrospun polymer fibers using a T-peel test. Polym Eng Sci 53(10):2219–2227
Zurück zum Zitat Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26CrossRef Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26CrossRef
Zurück zum Zitat Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111CrossRef Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111CrossRef
Zurück zum Zitat Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287CrossRef Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287CrossRef
Zurück zum Zitat Berthier E, Young EW, Beebe D (2012) Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12(7):1224–1237CrossRef Berthier E, Young EW, Beebe D (2012) Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12(7):1224–1237CrossRef
Zurück zum Zitat Boiko YM, Prud’Homme RE (1997) Bonding at symmetric polymer/polymer interfaces below the glass transition temperature. Macromolecules 30(12):3708–3710CrossRef Boiko YM, Prud’Homme RE (1997) Bonding at symmetric polymer/polymer interfaces below the glass transition temperature. Macromolecules 30(12):3708–3710CrossRef
Zurück zum Zitat Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6(1):66–73CrossRef Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6(1):66–73CrossRef
Zurück zum Zitat Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol–ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11(18):3136–3147CrossRef Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol–ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11(18):3136–3147CrossRef
Zurück zum Zitat Cassano CL, Simon AJ, Liu W, Fredrickson C, Fan ZH (2015) Use of vacuum bagging for fabricating thermoplastic microfluidic devices. Lab Chip 15(1):62–66CrossRef Cassano CL, Simon AJ, Liu W, Fredrickson C, Fan ZH (2015) Use of vacuum bagging for fabricating thermoplastic microfluidic devices. Lab Chip 15(1):62–66CrossRef
Zurück zum Zitat Chen J, Zhou Y, Wang D, He F, Rotello VM, Carter KR, Watkins JJ, Nugen SR (2015) UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection. Lab Chip 15(14):3086–3094CrossRef Chen J, Zhou Y, Wang D, He F, Rotello VM, Carter KR, Watkins JJ, Nugen SR (2015) UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection. Lab Chip 15(14):3086–3094CrossRef
Zurück zum Zitat Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134CrossRef Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134CrossRef
Zurück zum Zitat Chow WWY, Lei KF, Shi G, Li WJ, Huang Q (2005) Microfluidic channel fabrication by PDMS-interface bonding. Smart Mater Struct 15(1):S112CrossRef Chow WWY, Lei KF, Shi G, Li WJ, Huang Q (2005) Microfluidic channel fabrication by PDMS-interface bonding. Smart Mater Struct 15(1):S112CrossRef
Zurück zum Zitat Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18(5):067001CrossRef Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18(5):067001CrossRef
Zurück zum Zitat Focke M, Kosse D, Müller C, Reinecke H, Zengerle R, von Stetten F (2010) Lab-on-a-foil: microfluidics on thin and flexible films. Lab Chip 10(11):1365–1386CrossRef Focke M, Kosse D, Müller C, Reinecke H, Zengerle R, von Stetten F (2010) Lab-on-a-foil: microfluidics on thin and flexible films. Lab Chip 10(11):1365–1386CrossRef
Zurück zum Zitat Folch, A. 2016. Introduction to bioMEMS. CRC Press Folch, A. 2016. Introduction to bioMEMS. CRC Press
Zurück zum Zitat Gao H, Tan H, Zhang W, Morton K, Chou SY (2006) Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field. Nano Lett 6(11):2438–2441CrossRef Gao H, Tan H, Zhang W, Morton K, Chou SY (2006) Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field. Nano Lett 6(11):2438–2441CrossRef
Zurück zum Zitat Gordon TL, Fakley ME (2003) The influence of elastic modulus on adhesion to thermoplastics and thermoset materials. Int J Adhes Adhes 23(2):95–100CrossRef Gordon TL, Fakley ME (2003) The influence of elastic modulus on adhesion to thermoplastics and thermoset materials. Int J Adhes Adhes 23(2):95–100CrossRef
Zurück zum Zitat Guber AE, Heckele M, Herrmann D, Muslija A, Saile V, Eichhorn L, Gietzelt T, Hoffmann W, Hauser PC, Tanyanyiwa J, Gerlach A (2004) Microfluidic lab-on-a-chip systems based on polymers—fabrication and application. Chem Eng J 101(1–3):447–453CrossRef Guber AE, Heckele M, Herrmann D, Muslija A, Saile V, Eichhorn L, Gietzelt T, Hoffmann W, Hauser PC, Tanyanyiwa J, Gerlach A (2004) Microfluidic lab-on-a-chip systems based on polymers—fabrication and application. Chem Eng J 101(1–3):447–453CrossRef
Zurück zum Zitat Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19(4):495–513CrossRef Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19(4):495–513CrossRef
Zurück zum Zitat Huang FC, Chen YF, Lee GB (2007) CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods. Electrophoresis 28(7):1130–1137CrossRef Huang FC, Chen YF, Lee GB (2007) CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods. Electrophoresis 28(7):1130–1137CrossRef
Zurück zum Zitat Kelly RT, Woolley AT (2003) Thermal bonding of polymeric capillary electrophoresis microdevices in water. Anal Chem 75(8):1941–1945CrossRef Kelly RT, Woolley AT (2003) Thermal bonding of polymeric capillary electrophoresis microdevices in water. Anal Chem 75(8):1941–1945CrossRef
Zurück zum Zitat Khan I, Poh BT (2011) Natural rubber-based pressure-sensitive adhesives: a review. J Polym Environ 19(3):793CrossRef Khan I, Poh BT (2011) Natural rubber-based pressure-sensitive adhesives: a review. J Polym Environ 19(3):793CrossRef
Zurück zum Zitat Kim H, Mizumachi H (1995) Miscibility and peel strength of acrylic pressure-sensitive adhesives: acrylic copolymer–tackifier resin systems. J Appl Polym Sci 56(2):201–209CrossRef Kim H, Mizumachi H (1995) Miscibility and peel strength of acrylic pressure-sensitive adhesives: acrylic copolymer–tackifier resin systems. J Appl Polym Sci 56(2):201–209CrossRef
Zurück zum Zitat Mahmoodi SR, Besser RS (2018) Fabrication and characterization of a thin, double-sided air breathing micro fuel cell. Fuel Cells 18(4):499–508CrossRef Mahmoodi SR, Besser RS (2018) Fabrication and characterization of a thin, double-sided air breathing micro fuel cell. Fuel Cells 18(4):499–508CrossRef
Zurück zum Zitat Marasso SL, Mombello D, Cocuzza M, Casalena D, Ferrante I, Nesca A, Poiklik P, Rekker K, Aaspollu A, Ferrero S, Pirri CF (2014) A polymer lab-on-a-chip for genetic analysis using the arrayed primer extension on microarray chips. Biomed Microdevice 16(5):661–670CrossRef Marasso SL, Mombello D, Cocuzza M, Casalena D, Ferrante I, Nesca A, Poiklik P, Rekker K, Aaspollu A, Ferrero S, Pirri CF (2014) A polymer lab-on-a-chip for genetic analysis using the arrayed primer extension on microarray chips. Biomed Microdevice 16(5):661–670CrossRef
Zurück zum Zitat Matellan C, Armando E (2018) Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices. Sci Rep 8(1):6971CrossRef Matellan C, Armando E (2018) Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices. Sci Rep 8(1):6971CrossRef
Zurück zum Zitat McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499CrossRef McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499CrossRef
Zurück zum Zitat Miserere S, Mottet G, Taniga V, Descroix S, Viovy JL, Malaquin L (2012) Fabrication of thermoplastics chips through lamination based techniques. Lab Chip 12(10):1849–1856CrossRef Miserere S, Mottet G, Taniga V, Descroix S, Viovy JL, Malaquin L (2012) Fabrication of thermoplastics chips through lamination based techniques. Lab Chip 12(10):1849–1856CrossRef
Zurück zum Zitat Nagarajan P, Yao D (2011) Uniform shell patterning using rubber-assisted hot embossing process. I. Experimental. Polym Eng Sci 51(3):592–600CrossRef Nagarajan P, Yao D (2011) Uniform shell patterning using rubber-assisted hot embossing process. I. Experimental. Polym Eng Sci 51(3):592–600CrossRef
Zurück zum Zitat Narasimhan J, Papautsky I (2003) Polymer embossing tools for rapid prototyping of plastic microfluidic devices. J Micromech Microeng 14(1):96CrossRef Narasimhan J, Papautsky I (2003) Polymer embossing tools for rapid prototyping of plastic microfluidic devices. J Micromech Microeng 14(1):96CrossRef
Zurück zum Zitat Nayak NC, Yue CY, Lam YC, Tan YL (2010) Thermal bonding of PMMA: effect of polymer molecular weight. Microsyst Technol 16(3):487CrossRef Nayak NC, Yue CY, Lam YC, Tan YL (2010) Thermal bonding of PMMA: effect of polymer molecular weight. Microsyst Technol 16(3):487CrossRef
Zurück zum Zitat Nising P, Zeilmann T, Meyer T (2003) On the degradation and stabilization of poly (methyl methacrylate) in a continuous process. Chem Eng Technol 26(5):599–604CrossRef Nising P, Zeilmann T, Meyer T (2003) On the degradation and stabilization of poly (methyl methacrylate) in a continuous process. Chem Eng Technol 26(5):599–604CrossRef
Zurück zum Zitat Ogilvie IRG, Sieben VJ, Floquet CFA, Zmijan R, Mowlem MC, Morgan H (2010) Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J Micromech Microeng 20(6):065016CrossRef Ogilvie IRG, Sieben VJ, Floquet CFA, Zmijan R, Mowlem MC, Morgan H (2010) Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J Micromech Microeng 20(6):065016CrossRef
Zurück zum Zitat Park T, Song IH, Park DS, You BH, Murphy MC (2012) Thermoplastic fusion bonding using a pressure-assisted boiling point control system. Lab Chip 12(16):2799–2802CrossRef Park T, Song IH, Park DS, You BH, Murphy MC (2012) Thermoplastic fusion bonding using a pressure-assisted boiling point control system. Lab Chip 12(16):2799–2802CrossRef
Zurück zum Zitat Pemg BY, Wu CW, Shen YK, Lin Y (2010) Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polym Adv Technol 21(7):457–466CrossRef Pemg BY, Wu CW, Shen YK, Lin Y (2010) Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polym Adv Technol 21(7):457–466CrossRef
Zurück zum Zitat Peng Linfa, Deng Yujun, Yi Peiyun, Lai Xinmin (2014) Micro hot embossing of thermoplastic polymers: a review. J Micromech Microeng 24(1):013001CrossRef Peng Linfa, Deng Yujun, Yi Peiyun, Lai Xinmin (2014) Micro hot embossing of thermoplastic polymers: a review. J Micromech Microeng 24(1):013001CrossRef
Zurück zum Zitat Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181CrossRef Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181CrossRef
Zurück zum Zitat Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15(1–2):36–49CrossRef Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15(1–2):36–49CrossRef
Zurück zum Zitat Su YC, Shah J, Lin L (2003) Implementation and analysis of polymeric microstructure replication by micro injection molding. J Micromech Microeng 14(3):415CrossRef Su YC, Shah J, Lin L (2003) Implementation and analysis of polymeric microstructure replication by micro injection molding. J Micromech Microeng 14(3):415CrossRef
Zurück zum Zitat Sun Y, Kwok YC, Nguyen NT (2006) Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J Micromech Microeng 16(8):1681CrossRef Sun Y, Kwok YC, Nguyen NT (2006) Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J Micromech Microeng 16(8):1681CrossRef
Zurück zum Zitat Tan H, Kong L, Li M, Steere C, Koecher L (2004) Current status of nanonex nanoimprint solutions. Int Soc Opt Photon 5374:213–222 Tan H, Kong L, Li M, Steere C, Koecher L (2004) Current status of nanonex nanoimprint solutions. Int Soc Opt Photon 5374:213–222
Zurück zum Zitat Truckenmüller R, Giselbrecht S, Rivron N, Gottwald E, Saile V, Van den Berg A, Wessling M, Van Blitterswijk C (2011) Thermoforming of film-based biomedical microdevices. Adv Mater 23(11):1311–1329CrossRef Truckenmüller R, Giselbrecht S, Rivron N, Gottwald E, Saile V, Van den Berg A, Wessling M, Van Blitterswijk C (2011) Thermoforming of film-based biomedical microdevices. Adv Mater 23(11):1311–1329CrossRef
Zurück zum Zitat Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6(1):1–16CrossRef Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6(1):1–16CrossRef
Zurück zum Zitat Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7(4):499–505CrossRef Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7(4):499–505CrossRef
Zurück zum Zitat Velten T, Ruf HH, Barrow D, Aspragathos N, Lazarou P, Jung E, Malek CK, Richter M, Kruckow J, Wackerle M (2005) Packaging of bio-MEMS: strategies, technologies, and applications. IEEE Trans Adv Packag 28(4):533–546CrossRef Velten T, Ruf HH, Barrow D, Aspragathos N, Lazarou P, Jung E, Malek CK, Richter M, Kruckow J, Wackerle M (2005) Packaging of bio-MEMS: strategies, technologies, and applications. IEEE Trans Adv Packag 28(4):533–546CrossRef
Zurück zum Zitat Wang X, Jin J, Li X, Li X, Ou Y, Tang Q, Fu S, Gao F (2011a) Low-pressure thermal bonding. Microelectron Eng 88(8):2427–2430CrossRef Wang X, Jin J, Li X, Li X, Ou Y, Tang Q, Fu S, Gao F (2011a) Low-pressure thermal bonding. Microelectron Eng 88(8):2427–2430CrossRef
Zurück zum Zitat Wang ZY, Yue CY, Lam YC, Roy S, Jena RK (2011b) A modified quasi-creep model for assessment of deformation of topas COC substrates in the thermal bonding of microfluidic devices: experiments and modeling. J Appl Polym Sci 122(2):867–873CrossRef Wang ZY, Yue CY, Lam YC, Roy S, Jena RK (2011b) A modified quasi-creep model for assessment of deformation of topas COC substrates in the thermal bonding of microfluidic devices: experiments and modeling. J Appl Polym Sci 122(2):867–873CrossRef
Zurück zum Zitat Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York
Zurück zum Zitat Zhou W (2013) Nanoimprint lithography: an enabling process for nanofabrication. Springer, BerlinCrossRef Zhou W (2013) Nanoimprint lithography: an enabling process for nanofabrication. Springer, BerlinCrossRef
Zurück zum Zitat Zhu X, Liu G, Guo Y, Tian Y (2007) Study of PMMA thermal bonding. Microsyst Technol 13(3–4):403–407 Zhu X, Liu G, Guo Y, Tian Y (2007) Study of PMMA thermal bonding. Microsyst Technol 13(3–4):403–407
Metadaten
Titel
Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices
verfasst von
S. R. Mahmoodi
P.-K. Sun
M. Mayer
R. S. Besser
Publikationsdatum
18.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04380-9

Weitere Artikel der Ausgabe 10/2019

Microsystem Technologies 10/2019 Zur Ausgabe

Neuer Inhalt