Skip to main content
Erschienen in: Journal of Nanoparticle Research 11/2013

01.11.2013 | Research Paper

GCMC simulation of hydrogen adsorption in densely packed arrays of Li-doped and hydrogenated carbon nanotubes

verfasst von: Simone Mirabella, Massimo Celino, Giuseppe Zollo

Erschienen in: Journal of Nanoparticle Research | Ausgabe 11/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The upper threshold of hydrogen adsorption in Li-doped and hydrogenated carbon nanotube densely packed arrays is calculated to check the ability of such systems to fulfill the target indicated by the United States Department of Energy (DOE). To this aim, model potential parameters have been obtained by Density Functional Theory and have been used to calculate the adsorption isotherms in honeycomb arrays containing up to seven tubes by means of Grand-Canonical Monte Carlo simulations. A hybrid model has been developed involving both atomistic potentials for short-range interactions and integrated potentials for hydrogen interacting with distant tubes. In the pressure range explored, it is shown that the hydrogen adsorption performances of Li-doped carbon nanotubes arranged in close packed honeycomb arrays, while being enhanced with respect to pristine carbon nanotubes, are still well below the DOE targets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arellano JS, Molina LM, Rubio A, Lopez M, Alonso JA (2002) Interaction of molecular and atomic hydrogen with (5, 5) and (6, 6) single-wall carbon nanotubes. J Chem Phys 117:2281–2288CrossRef Arellano JS, Molina LM, Rubio A, Lopez M, Alonso JA (2002) Interaction of molecular and atomic hydrogen with (5, 5) and (6, 6) single-wall carbon nanotubes. J Chem Phys 117:2281–2288CrossRef
Zurück zum Zitat Barnard AS, Terranova ML, Rossi M (2005) Density functional study of H-induced defects as nucleation sites in hybrid carbon nanomaterials. Chem Mater 17(3):527–535CrossRef Barnard AS, Terranova ML, Rossi M (2005) Density functional study of H-induced defects as nucleation sites in hybrid carbon nanomaterials. Chem Mater 17(3):527–535CrossRef
Zurück zum Zitat Bauschlicher C, So C (2002) High coverages of hydrogen on (10, 0), (9, 0) and (5, 5) carbon nanotubes. Nanoletters 2:337–341CrossRef Bauschlicher C, So C (2002) High coverages of hydrogen on (10, 0), (9, 0) and (5, 5) carbon nanotubes. Nanoletters 2:337–341CrossRef
Zurück zum Zitat Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098CrossRef Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098CrossRef
Zurück zum Zitat Bhatia SK, Myers AL (2006) Optimum conditions for adsorptive storage. Langmuir 22:1688CrossRef Bhatia SK, Myers AL (2006) Optimum conditions for adsorptive storage. Langmuir 22:1688CrossRef
Zurück zum Zitat Cabria I, Lopez M, Alonso JA (2005) Enhancement of hydrogen physisorption on graphene and carbon nanotube by Li doping. J Chem Phys 123:204,721CrossRef Cabria I, Lopez M, Alonso JA (2005) Enhancement of hydrogen physisorption on graphene and carbon nanotube by Li doping. J Chem Phys 123:204,721CrossRef
Zurück zum Zitat Chen L, Zhang Y, Koratkar N, Jena P, Nayak SK (2008) First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures. Phys Rev B 77:0334,054 Chen L, Zhang Y, Koratkar N, Jena P, Nayak SK (2008) First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures. Phys Rev B 77:0334,054
Zurück zum Zitat Chen P, Wu X, Lin J, Tan KL (1999) High H 2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93CrossRef Chen P, Wu X, Lin J, Tan KL (1999) High H 2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93CrossRef
Zurück zum Zitat Cheng J, Yuan X, Fang X, Zhang L (2010) Computer simulation of hydrogen physisorption in a Li-doped single walled carbon nanotube array. Carbon 48:567–570CrossRef Cheng J, Yuan X, Fang X, Zhang L (2010) Computer simulation of hydrogen physisorption in a Li-doped single walled carbon nanotube array. Carbon 48:567–570CrossRef
Zurück zum Zitat Dag S, Ozturk Y, Ciraci S, Yildirim T (2005) Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys Rev B 72:155,404CrossRef Dag S, Ozturk Y, Ciraci S, Yildirim T (2005) Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys Rev B 72:155,404CrossRef
Zurück zum Zitat Darkrim F, Levesque D (1998) Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J Chem Phys 109:4981–4985CrossRef Darkrim F, Levesque D (1998) Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J Chem Phys 109:4981–4985CrossRef
Zurück zum Zitat Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef
Zurück zum Zitat Goedecker S, Teter M, Hutter J (1996) Separable dual-space gaussian pseudopotentials. Phys Rev B 54:1703–1710CrossRef Goedecker S, Teter M, Hutter J (1996) Separable dual-space gaussian pseudopotentials. Phys Rev B 54:1703–1710CrossRef
Zurück zum Zitat Gotzias A, Heiberg-Andersen H, Kainourgiakis M, Steriotis T (2010) Grand Canonical Monte Carlo simulations of hydrogen adsorption in carbon cones. Appl Surf Sci 256:5226–5231CrossRef Gotzias A, Heiberg-Andersen H, Kainourgiakis M, Steriotis T (2010) Grand Canonical Monte Carlo simulations of hydrogen adsorption in carbon cones. Appl Surf Sci 256:5226–5231CrossRef
Zurück zum Zitat Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef
Zurück zum Zitat Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641–3662CrossRef Hartwigsen C, Goedecker S, Hutter J (1998) Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641–3662CrossRef
Zurück zum Zitat Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theoret Chimi Acta 44:129–138CrossRef Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theoret Chimi Acta 44:129–138CrossRef
Zurück zum Zitat Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–871CrossRef Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–871CrossRef
Zurück zum Zitat Ioannatos GE, Verykios XE (2010) H 2 storage on single- and multi-walled carbon nanotubes. Int J Hydrogen Energy 35:622–628CrossRef Ioannatos GE, Verykios XE (2010) H 2 storage on single- and multi-walled carbon nanotubes. Int J Hydrogen Energy 35:622–628CrossRef
Zurück zum Zitat Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–1138CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–1138CrossRef
Zurück zum Zitat Krack M (2005) Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor Chem Acc 114:145–152CrossRef Krack M (2005) Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor Chem Acc 114:145–152CrossRef
Zurück zum Zitat Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–793CrossRef Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–793CrossRef
Zurück zum Zitat Lee EC, Kim YS, Jin Y, Chang KJ (2002) First-principles study of hydrogen adsorption on carbon nanotube surfaces. Phys Rev B 66:073,415CrossRef Lee EC, Kim YS, Jin Y, Chang KJ (2002) First-principles study of hydrogen adsorption on carbon nanotube surfaces. Phys Rev B 66:073,415CrossRef
Zurück zum Zitat Lee S, Lee Y (2000) Hydrogen Storage in single-walled carbon nanotubs. Appl Phys Lett 76:2877–2879CrossRef Lee S, Lee Y (2000) Hydrogen Storage in single-walled carbon nanotubs. Appl Phys Lett 76:2877–2879CrossRef
Zurück zum Zitat Lim KL, Kazemian H, Yaakob Z, Daud W, R W (2010) Solid-state materials and methods for hydrogen storage: A critical review. Chem Eng Technol 33:213–216CrossRef Lim KL, Kazemian H, Yaakob Z, Daud W, R W (2010) Solid-state materials and methods for hydrogen storage: A critical review. Chem Eng Technol 33:213–216CrossRef
Zurück zum Zitat Liu C, Chen Y, Wu CZ, Xu ST, Cheng H (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef Liu C, Chen Y, Wu CZ, Xu ST, Cheng H (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef
Zurück zum Zitat Ma Y, Xia Y, Zhao M, R W, Me L (2001) Effective hydrogen storage in single-wall carbon nanotubes. Phys Rev B 63:115,422CrossRef Ma Y, Xia Y, Zhao M, R W, Me L (2001) Effective hydrogen storage in single-wall carbon nanotubes. Phys Rev B 63:115,422CrossRef
Zurück zum Zitat Nguyen TX, Bae JS, Wang Y, Bhatia SK (2009) On the strength of the hydrogen-carbon interaction as deduced from physisorption. Langmuir 25:4314–4319CrossRef Nguyen TX, Bae JS, Wang Y, Bhatia SK (2009) On the strength of the hydrogen-carbon interaction as deduced from physisorption. Langmuir 25:4314–4319CrossRef
Zurück zum Zitat Ni M, Huang L, Guo L, Zeng Z (2010) Hydrogen storage in Li-doped charged single walled carbon nanotubes. Int J Hydrogen Energy 35:3546–3549CrossRef Ni M, Huang L, Guo L, Zeng Z (2010) Hydrogen storage in Li-doped charged single walled carbon nanotubes. Int J Hydrogen Energy 35:3546–3549CrossRef
Zurück zum Zitat Rangel E, Ramirez-de Arellano JM, Magana LF (2011) Variation of hydrogen adsorption with increasing Li doping on carbon nanotubes. Physica Status Solidi (b) 248(6):1420–1424CrossRef Rangel E, Ramirez-de Arellano JM, Magana LF (2011) Variation of hydrogen adsorption with increasing Li doping on carbon nanotubes. Physica Status Solidi (b) 248(6):1420–1424CrossRef
Zurück zum Zitat Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The US Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. J Comput Chem 120:246–256 Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The US Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. J Comput Chem 120:246–256
Zurück zum Zitat Stan G, Cole MW (1998) Low coverage adsorption in cylindrical pores. Surface Science 395:280–291CrossRef Stan G, Cole MW (1998) Low coverage adsorption in cylindrical pores. Surface Science 395:280–291CrossRef
Zurück zum Zitat Stan G, Bojan MJ, Curtarolo S, Gatica SM, Cole MW (2000) Uptake of gases in bundles of carbon nanotubes. Phys Rev B 62:2173–2180CrossRef Stan G, Bojan MJ, Curtarolo S, Gatica SM, Cole MW (2000) Uptake of gases in bundles of carbon nanotubes. Phys Rev B 62:2173–2180CrossRef
Zurück zum Zitat Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:577–586CrossRef Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:577–586CrossRef
Zurück zum Zitat Xiao H, Li S, Cao J (2009) First-principles study of Pd-decorated carbon nanotube for hydrogen storage. Chem Phys Lett 483:111–114CrossRef Xiao H, Li S, Cao J (2009) First-principles study of Pd-decorated carbon nanotube for hydrogen storage. Chem Phys Lett 483:111–114CrossRef
Zurück zum Zitat Yamanaka S, Fujikane M, Uno M, Murakami H, Miura O (2004) Hydrogen content and desorption of carbon nano-structures. J Alloy Compd 366:264–268CrossRef Yamanaka S, Fujikane M, Uno M, Murakami H, Miura O (2004) Hydrogen content and desorption of carbon nano-structures. J Alloy Compd 366:264–268CrossRef
Zurück zum Zitat Yeung CS, Liu LV, Wang YA (2008) Adsorption of small gas molecule onto Pt-doped single-walled carbon nanotubes. J Phys Chem C 112:7401–7411CrossRef Yeung CS, Liu LV, Wang YA (2008) Adsorption of small gas molecule onto Pt-doped single-walled carbon nanotubes. J Phys Chem C 112:7401–7411CrossRef
Zurück zum Zitat Yildirim T, Ciraci S (2005) Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett 94:175,501CrossRef Yildirim T, Ciraci S (2005) Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett 94:175,501CrossRef
Zurück zum Zitat Zhang X, Cao D, Chen J (2003) Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory. J Phys Chem B 107:4942–4950CrossRef Zhang X, Cao D, Chen J (2003) Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory. J Phys Chem B 107:4942–4950CrossRef
Metadaten
Titel
GCMC simulation of hydrogen adsorption in densely packed arrays of Li-doped and hydrogenated carbon nanotubes
verfasst von
Simone Mirabella
Massimo Celino
Giuseppe Zollo
Publikationsdatum
01.11.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 11/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-2071-x

Weitere Artikel der Ausgabe 11/2013

Journal of Nanoparticle Research 11/2013 Zur Ausgabe

Editorial for Special Issue on Nano-Sustainability

Nanotechnology for sustainable development: retrospective and outlook

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.