2013 | OriginalPaper | Buchkapitel
Gene Functional Prediction Using Clustering Methods for the Analysis of Tomato Microarray Data
verfasst von : Liliana López-Kleine, José Romeo, Francisco Torres-Avilés
Erschienen in: 7th International Conference on Practical Applications of Computational Biology & Bioinformatics
Verlag: Springer International Publishing
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Molecular mechanisms of plant-pathogen interaction have been studied thoroughly because of its importance for crop production and food supply. This knowledge is a starting point in order to identify new and specific resistance genes by detecting similar expression patterns. Here we evaluate the usefulness of clustering and data-mining methods to group together known plant resistance genes based on expression profiles. We conduct clustering separately on
P.infestans
inoculated and not-inoculated tomatoes and conclude that conducting the analysis separately is important for each condition, because grouping is different reflecting a characteristic behavior of resistance genes in presence of the pathogen.