Skip to main content
Erschienen in: Applicable Algebra in Engineering, Communication and Computing 1/2024

28.10.2023 | Original Paper

Generalized characteristic sets and new multivariate difference dimension polynomials

verfasst von: Alexander Levin

Erschienen in: Applicable Algebra in Engineering, Communication and Computing | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce a new type of characteristic sets of difference polynomials using a generalization of the concept of effective order to the case of partial difference polynomials and a partition of the basic set of translations \(\sigma\). Using properties of these characteristic sets, we prove the existence and outline a method of computation of a multivariate dimension polynomial of a finitely generated difference field extension that describes the transcendence degrees of intermediate fields obtained by adjoining transforms of the generators whose orders with respect to the components of the partition of \(\sigma\) are bounded by two sequences of natural numbers. We show that such dimension polynomials carry essentially more invariants (that is, characteristics of the extension that do not depend on the set of its difference generators) than previously known difference dimension polynomials. In particular, a dimension polynomial of the new type associated with a system of algebraic difference equations gives more information about the system than the classical univariate difference dimension polynomial.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cohn, R.M.: Difference Algebra. Interscience, New York (1965) Cohn, R.M.: Difference Algebra. Interscience, New York (1965)
2.
Zurück zum Zitat Einstein, A.: The Meaning of Relativity. Appendix II (Generalization of gravitation theory), 4th ed. Princeton, 133–165 Einstein, A.: The Meaning of Relativity. Appendix II (Generalization of gravitation theory), 4th ed. Princeton, 133–165
3.
Zurück zum Zitat Kolchin, E.R.: The notion of dimension in the theory of algebraic differential equations. Bull Am. Math. Soc. 70, 570–573 (1964)MathSciNetCrossRef Kolchin, E.R.: The notion of dimension in the theory of algebraic differential equations. Bull Am. Math. Soc. 70, 570–573 (1964)MathSciNetCrossRef
4.
Zurück zum Zitat Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, Boston (1973) Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, Boston (1973)
5.
Zurück zum Zitat Kondrateva, M. V., Levin, A. B., Mikhalev, A. V., Pankratev, E. V.: Differential and Difference Dimension Polynomials, Kluwer Acad. Publ (1998) Kondrateva, M. V., Levin, A. B., Mikhalev, A. V., Pankratev, E. V.: Differential and Difference Dimension Polynomials, Kluwer Acad. Publ (1998)
6.
Zurück zum Zitat Levin, A.B.: Characteristic polynomials of filtered difference modules and difference field extensions. Russ. Math. Surv. 33(3), 165–166 (1978)CrossRef Levin, A.B.: Characteristic polynomials of filtered difference modules and difference field extensions. Russ. Math. Surv. 33(3), 165–166 (1978)CrossRef
7.
Zurück zum Zitat Levin, A.B.: Characteristic polynomials of inversive difference modules and some properties of inversive difference dimension. Russ. Math. Surv. 35(1), 217–218 (1980)CrossRef Levin, A.B.: Characteristic polynomials of inversive difference modules and some properties of inversive difference dimension. Russ. Math. Surv. 35(1), 217–218 (1980)CrossRef
8.
Zurück zum Zitat Levin, A. B.: Computation of the Strength of Systems of Difference Equations via Generalized Gröbner Bases. In: Gröbner Bases in Symbolic Analysis, Walter de Gruyter. Berlin–New York, pp. 43–73 (2007) Levin, A. B.: Computation of the Strength of Systems of Difference Equations via Generalized Gröbner Bases. In: Gröbner Bases in Symbolic Analysis, Walter de Gruyter. Berlin–New York, pp. 43–73 (2007)
10.
Zurück zum Zitat Levin, A.B.: Multivariate dimension polynomials of inversive difference field extensions. Lect. Notes Comput. Sci. 8372, 146–163 (2014)MathSciNetCrossRef Levin, A.B.: Multivariate dimension polynomials of inversive difference field extensions. Lect. Notes Comput. Sci. 8372, 146–163 (2014)MathSciNetCrossRef
11.
12.
Zurück zum Zitat Levin, A.B.: Groebner bases with respect to several orderings and multivariable dimension polynomials. J. Symb. Comput. 42, 561–578 (2007)CrossRef Levin, A.B.: Groebner bases with respect to several orderings and multivariable dimension polynomials. J. Symb. Comput. 42, 561–578 (2007)CrossRef
13.
Zurück zum Zitat Levin, A.B.: A new type of difference dimension polynomials, Math. Comput. Sci., 16, no. 4, article 20, 13 pp (2022) Levin, A.B.: A new type of difference dimension polynomials, Math. Comput. Sci., 16, no. 4, article 20, 13 pp (2022)
14.
Zurück zum Zitat Levin, A.B.: Reduction with respect to the effective order and a new type of dimension polynomials of difference modules. In: Proceedings of ISSAC 2022. ACM Press, New York, 55–62 (2022) Levin, A.B.: Reduction with respect to the effective order and a new type of dimension polynomials of difference modules. In: Proceedings of ISSAC 2022. ACM Press, New York, 55–62 (2022)
15.
Zurück zum Zitat Levin, A.B., Mikhalev, A.V.: Type and dimension of finitely generated G-algebras. Contemp. Math. 184, 275–280 (1995)MathSciNetCrossRef Levin, A.B., Mikhalev, A.V.: Type and dimension of finitely generated G-algebras. Contemp. Math. 184, 275–280 (1995)MathSciNetCrossRef
16.
Zurück zum Zitat Mikhalev, A.V., Pankratev, E.V.: Differential dimension polynomial of a system of differential equations, Algebra (collection of papers), Moscow State Univ. Press, 57–67 (1980) Mikhalev, A.V., Pankratev, E.V.: Differential dimension polynomial of a system of differential equations, Algebra (collection of papers), Moscow State Univ. Press, 57–67 (1980)
Metadaten
Titel
Generalized characteristic sets and new multivariate difference dimension polynomials
verfasst von
Alexander Levin
Publikationsdatum
28.10.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing / Ausgabe 1/2024
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-023-00628-0

Weitere Artikel der Ausgabe 1/2024

Applicable Algebra in Engineering, Communication and Computing 1/2024 Zur Ausgabe

Preface

Preface