Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 11-12/2021

09.06.2021 | ORIGINAL ARTICLE

Geometric characteristics of AlSi10Mg ultrathin walls fabricated by selective laser melting with energy density and related process parameters

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 11-12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In applications requiring large specific surface area, ultrathin walls fabricated by selective laser melting (SLM) have attracted wide attention. Understanding that the geometric characteristics of ultrathin walls are affected by process parameters is an important topic. To investigate the influence of SLM process parameters on geometric morphology, interlayer banding characteristics, and defects of the AlSi10Mg ultrathin walls, based on the normalized processing map, the multi-layers and single-track SLM tests under different energy density and interlayer cooling conditions were implemented. The ultrathin walls with the width between 100 μm and 450 μm were successfully fabricated in the range of single-track energy density between 5 and 30, and their geometric morphology and interlayer banding characteristics are not significantly affected by the interlayer cooling time. Except that the height of thin walls does not change significantly with the process parameters, the width, penetration depth, and cross-sectional area of molten pool all have a power function decreasing relationship with the scanning speed, and all have a linearly increasing relationship with the laser power and single-track energy density, respectively. The macroscopic banding distance decreases linearly with the increase of laser power and single-track energy density and decreases exponentially with the decrease of scanning speed. When the single-track energy density is about 5 and 25, it is easier to obtain a more uniform banding distance close to the standard preset layer thickness under high power (≥ 300 W) with lower scanning speed (≤ 0.589746 m/s). The process parameter combination of high laser power (≥ 300 W) and low energy density (E* = 5) contributes to obtaining ultrathin-walled structures with the narrowest width of about 100 μm. Within the range of single-track energy density of 10 to 20, the use of appropriate laser power and scanning speed can be expected to avoid “necking,” “keyhole pore,” and “cracking” defects. This work provides guidance for choosing reasonable SLM process parameters when fabricating ultrathin walls in practical engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRef Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRef
2.
Zurück zum Zitat Bharath C, Shamanth V, Hemanth K (2020) Studies on mechanical behaviour of AlSi10Mg alloy produced by selective laser melting and A360 alloy by die casting. Mater Today Proc:S2214785320376732 Bharath C, Shamanth V, Hemanth K (2020) Studies on mechanical behaviour of AlSi10Mg alloy produced by selective laser melting and A360 alloy by die casting. Mater Today Proc:S2214785320376732
3.
Zurück zum Zitat Kempen K, Thijs L, Van Humbeeck J, Kruth JP (2015) Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization. Mater Sci Technol 31:917–923CrossRef Kempen K, Thijs L, Van Humbeeck J, Kruth JP (2015) Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization. Mater Sci Technol 31:917–923CrossRef
4.
Zurück zum Zitat Kong D, Ni X, Dong C, Zhang L, Cheng M, Cheng X, Li X (2019) Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting. Mater Lett 235:1–5CrossRef Kong D, Ni X, Dong C, Zhang L, Cheng M, Cheng X, Li X (2019) Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting. Mater Lett 235:1–5CrossRef
5.
Zurück zum Zitat Ataee A, Li Y, Brandt M, Wen C (2018) Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater 158:354–368CrossRef Ataee A, Li Y, Brandt M, Wen C (2018) Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater 158:354–368CrossRef
6.
Zurück zum Zitat Ho JY, Leong KC, Wong TN (2020) Additively-manufactured metallic porous lattice heat exchangers for air-side heat transfer enhancement. Int J Heat Mass Transf 150:119262CrossRef Ho JY, Leong KC, Wong TN (2020) Additively-manufactured metallic porous lattice heat exchangers for air-side heat transfer enhancement. Int J Heat Mass Transf 150:119262CrossRef
7.
Zurück zum Zitat Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357CrossRef Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357CrossRef
8.
Zurück zum Zitat Calignano F, Cattano G, Manfredi D (2018) Manufacturing of thin wall structures in AlSi10Mg alloy by laser powder bed fusion through process parameters. J Mater Process Technol 255:773–783CrossRef Calignano F, Cattano G, Manfredi D (2018) Manufacturing of thin wall structures in AlSi10Mg alloy by laser powder bed fusion through process parameters. J Mater Process Technol 255:773–783CrossRef
9.
Zurück zum Zitat Thijs L, Kempen K, Kruth JP, Van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61:1809–1819CrossRef Thijs L, Kempen K, Kruth JP, Van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61:1809–1819CrossRef
10.
Zurück zum Zitat Anwar AB, Pham QC (2017) Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength. J Mater Process Technol 240:388–396CrossRef Anwar AB, Pham QC (2017) Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength. J Mater Process Technol 240:388–396CrossRef
11.
Zurück zum Zitat Trevisan F, Calignano F, Lorusso M, Pakkanen J, Aversa A, Ambrosio E, Lombardi M, Fino P, Manfredi D (2017) On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials 10:76CrossRef Trevisan F, Calignano F, Lorusso M, Pakkanen J, Aversa A, Ambrosio E, Lombardi M, Fino P, Manfredi D (2017) On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials 10:76CrossRef
12.
Zurück zum Zitat Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 1980-2015 65:417–424 Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 1980-2015 65:417–424
13.
Zurück zum Zitat Zhang S, Wei Q, Cheng L, Li S, Shi Y (2014) Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater Des 63:185–193CrossRef Zhang S, Wei Q, Cheng L, Li S, Shi Y (2014) Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater Des 63:185–193CrossRef
14.
Zurück zum Zitat Yadroitsev I, Shishkovsky I, Bertrand P, Smurov I (2009) Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Appl Surf Sci 255:5523–5527CrossRef Yadroitsev I, Shishkovsky I, Bertrand P, Smurov I (2009) Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Appl Surf Sci 255:5523–5527CrossRef
15.
Zurück zum Zitat Su X, Yang Y, Xiao D, Luo Z (2013) An investigation into direct fabrication of fine-structured components by selective laser melting. Int J Adv Manuf Technol 64:1231–1238CrossRef Su X, Yang Y, Xiao D, Luo Z (2013) An investigation into direct fabrication of fine-structured components by selective laser melting. Int J Adv Manuf Technol 64:1231–1238CrossRef
16.
Zurück zum Zitat Abele E, Stoffregen HA, Kniepkamp M, Lang S, Hampe M (2015) Selective laser melting for manufacturing of thin-walled porous elements. J Mater Process Technol 215:114–122CrossRef Abele E, Stoffregen HA, Kniepkamp M, Lang S, Hampe M (2015) Selective laser melting for manufacturing of thin-walled porous elements. J Mater Process Technol 215:114–122CrossRef
17.
Zurück zum Zitat Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines 11:633CrossRef Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines 11:633CrossRef
18.
Zurück zum Zitat Kim DK, Hwang JH, Kim EY, Heo YU, Woo W, Choi SH (2017) Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM. J Alloys Compd 714:687–697CrossRef Kim DK, Hwang JH, Kim EY, Heo YU, Woo W, Choi SH (2017) Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM. J Alloys Compd 714:687–697CrossRef
19.
Zurück zum Zitat Wang D, Wu S, Bai Y, Lin H, Yang Y, Song C (2017) Characteristics of typical geometrical features shaped by selective laser melting. J Laser Appl 29:022007CrossRef Wang D, Wu S, Bai Y, Lin H, Yang Y, Song C (2017) Characteristics of typical geometrical features shaped by selective laser melting. J Laser Appl 29:022007CrossRef
20.
Zurück zum Zitat Yadroitsev I, Smurov I (2010) Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys Procedia 5:551–560CrossRef Yadroitsev I, Smurov I (2010) Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys Procedia 5:551–560CrossRef
21.
Zurück zum Zitat Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58:3303–3312CrossRef Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58:3303–3312CrossRef
22.
Zurück zum Zitat Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I (2013) Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol 213:606–613CrossRef Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I (2013) Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol 213:606–613CrossRef
23.
Zurück zum Zitat Thomas M, Baxter GJ, Todd I (2016) Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Mater 108:26–35CrossRef Thomas M, Baxter GJ, Todd I (2016) Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Mater 108:26–35CrossRef
24.
Zurück zum Zitat Ion JC, Shercliff HR, Ashby MF (1992) Diagrams for laser materials processing. Acta Metall Mater 40:1539–1551CrossRef Ion JC, Shercliff HR, Ashby MF (1992) Diagrams for laser materials processing. Acta Metall Mater 40:1539–1551CrossRef
25.
Zurück zum Zitat Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1–4:77–86 Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1–4:77–86
26.
Zurück zum Zitat Kempen K, Thijs L, Van Humbeeck J, Kruth JP (2012) Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia 39:439–446CrossRef Kempen K, Thijs L, Van Humbeeck J, Kruth JP (2012) Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia 39:439–446CrossRef
27.
Zurück zum Zitat Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C, Shi Y (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125CrossRef Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C, Shi Y (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125CrossRef
28.
Zurück zum Zitat Biffi CA, Fiocchi J, Bassani P, Paolino DS, Tridello A, Chiandussi G, Rossetto M, Tuissi A (2017) Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM. Procedia Struct Integr 7:50–57CrossRef Biffi CA, Fiocchi J, Bassani P, Paolino DS, Tridello A, Chiandussi G, Rossetto M, Tuissi A (2017) Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM. Procedia Struct Integr 7:50–57CrossRef
29.
Zurück zum Zitat Yu T, Hyer H, Sohn Y, Bai Y, Wu D (2019) Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des 182:108062CrossRef Yu T, Hyer H, Sohn Y, Bai Y, Wu D (2019) Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des 182:108062CrossRef
30.
Zurück zum Zitat Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169CrossRef Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169CrossRef
31.
Zurück zum Zitat Uzan NE, Shneck R, Yeheskel O, Frage N (2017) Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Mater Sci Eng A 704:229–237CrossRef Uzan NE, Shneck R, Yeheskel O, Frage N (2017) Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Mater Sci Eng A 704:229–237CrossRef
32.
Zurück zum Zitat Leary M, Maconachie T, Sarker A, Faruque O, Brandt M (2019) Mechanical and thermal characterisation of AlSi10Mg SLM block support structures. Mater Des 183:108138CrossRef Leary M, Maconachie T, Sarker A, Faruque O, Brandt M (2019) Mechanical and thermal characterisation of AlSi10Mg SLM block support structures. Mater Des 183:108138CrossRef
33.
Zurück zum Zitat Silbernagel C, Ashcroft I, Dickens P, Galea M (2018) Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors. Addit Manuf 21:395–403 Silbernagel C, Ashcroft I, Dickens P, Galea M (2018) Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors. Addit Manuf 21:395–403
34.
Zurück zum Zitat Maamoun AH, Elbestawi M, Dosbaeva GK, Veldhuis SC (2018) Thermal post-processing of AlSi10Mg parts produced by selective laser melting using recycled powder. Addit Manuf 21:234–247 Maamoun AH, Elbestawi M, Dosbaeva GK, Veldhuis SC (2018) Thermal post-processing of AlSi10Mg parts produced by selective laser melting using recycled powder. Addit Manuf 21:234–247
35.
Zurück zum Zitat Kempen K, Thijs L, Yasa E, Badrossamay M, Verheecke W, Kruth JP (2011) Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. Proc. Solid Free. Fabr. Symp. Texas, USA, In Kempen K, Thijs L, Yasa E, Badrossamay M, Verheecke W, Kruth JP (2011) Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. Proc. Solid Free. Fabr. Symp. Texas, USA, In
36.
Zurück zum Zitat Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131:70–79CrossRef Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131:70–79CrossRef
Metadaten
Titel
Geometric characteristics of AlSi10Mg ultrathin walls fabricated by selective laser melting with energy density and related process parameters
Publikationsdatum
09.06.2021
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 11-12/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07414-7

Weitere Artikel der Ausgabe 11-12/2021

The International Journal of Advanced Manufacturing Technology 11-12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.