Skip to main content
Erschienen in: Current Sustainable/Renewable Energy Reports 4/2023

04.12.2023 | Review

Geophysical Constraints on Decarbonized Systems—Building Spatio-Temporal Uncertainties into Future Electricity Grid Planning

verfasst von: AFM Kamal Chowdhury, Thomas Wild, Ranjit Deshmukh, Gokul Iyer, Stefano Galelli

Erschienen in: Current Sustainable/Renewable Energy Reports | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose of Review

Future electricity grids will be characterized by the high penetration of renewables to support the decarbonization process. Yet, this transition will further expose grids to a broad spectrum of geophysical forces, such as weather and climate or the availability of land and minerals. Here, we synthesize the current body of knowledge on the relationship between geophysical constraints and electricity grid planning.

Recent Findings

We show that there have been promising advances in the data, methods, and modelling tools needed to incorporate the effect of geophysical constraints on demand, resource availability, and grid operations. However, current research efforts are typically focused on the effect of a single constraint, thereby lacking a broader view of the problem.

Summary

More system-specific and finer-scale analyses are necessary to better understand how spatio-temporal variability in geophysical forces affects grid planning. Moreover, we need a broader focus on the multi-sectoral implications of decarbonization efforts, including the societal consequences of grid management decisions. Importantly, all these efforts are challenged by the computational requirements of existing power system models, which often limit our ability to characterize uncertainty and scale analyses across larger domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Wu GC, Leslie E, Sawyerr O, Cameron DR, Brand E, Cohen B, Allen D, Ochoa M, Olson A. Low-impact land use pathways to deep decarbonization of electricity. Environ Res Lett. 2020;15(7):074044. https://doi.org/10.1088/1748-9326/ab87d1. Publisher: IOP Publishing. Accessed 14 July 2023. Wu GC, Leslie E, Sawyerr O, Cameron DR, Brand E, Cohen B, Allen D, Ochoa M, Olson A. Low-impact land use pathways to deep decarbonization of electricity. Environ Res Lett. 2020;15(7):074044. https://​doi.​org/​10.​1088/​1748-9326/​ab87d1. Publisher: IOP Publishing. Accessed 14 July 2023.
6.
Zurück zum Zitat Wu GC, Jones RA, Leslie E, Williams JH, Pascale A, Brand E, Parker SS, Cohen BS, Fargione JE, Souder J, Batres M, Gleason MG, Schindel MH, Stanley CK. Minimizing habitat conflicts in meeting net-zero energy targets in the western United States. Proc Natl Acad Sci. 2023;120(4):2204098120. https://doi.org/10.1073/pnas.2204098120. Publisher: Proceedings of the National Academy of Sciences. Accessed 14 July 2023. Wu GC, Jones RA, Leslie E, Williams JH, Pascale A, Brand E, Parker SS, Cohen BS, Fargione JE, Souder J, Batres M, Gleason MG, Schindel MH, Stanley CK. Minimizing habitat conflicts in meeting net-zero energy targets in the western United States. Proc Natl Acad Sci. 2023;120(4):2204098120. https://​doi.​org/​10.​1073/​pnas.​2204098120. Publisher: Proceedings of the National Academy of Sciences. Accessed 14 July 2023.
8.
10.
Zurück zum Zitat Ou Y, Iyer G, Clarke L, Edmonds J, Fawcett AA, Hultman N, McFarland JR, Binsted M, Cui R, Fyson C, Geiges A, Gonzales-Zuñiga S, Gidden MJ, Höhne N, Jeffery L, Kuramochi T, Lewis J, Meinshausen M, Nicholls Z, Patel P, Ragnauth S, Rogelj J, Waldhoff S, Yu S, McJeon H. Can updated climate pledges limit warming well below 2\(^\circ \)C? Science. 2021;374(6568):693–5. https://doi.org/10.1126/science.abl8976. Publisher: American Association for the Advancement of Science. Accessed 13 July 2023. Ou Y, Iyer G, Clarke L, Edmonds J, Fawcett AA, Hultman N, McFarland JR, Binsted M, Cui R, Fyson C, Geiges A, Gonzales-Zuñiga S, Gidden MJ, Höhne N, Jeffery L, Kuramochi T, Lewis J, Meinshausen M, Nicholls Z, Patel P, Ragnauth S, Rogelj J, Waldhoff S, Yu S, McJeon H. Can updated climate pledges limit warming well below 2\(^\circ \)C? Science. 2021;374(6568):693–5. https://​doi.​org/​10.​1126/​science.​abl8976. Publisher: American Association for the Advancement of Science. Accessed 13 July 2023.
11.
Zurück zum Zitat Bistline J, Abhyankar N, Blanford G, Clarke L, Fakhry R, McJeon H, Reilly J, Roney C, Wilson T, Yuan M, Zhao A. Actions for reducing US emissions at least 50% by 2030. Science. 2022;376(6596):922–4. https://doi.org/10.1126/science.abn0661. Publisher: American Association for the Advancement of Science. Accessed 13 July 2023. Bistline J, Abhyankar N, Blanford G, Clarke L, Fakhry R, McJeon H, Reilly J, Roney C, Wilson T, Yuan M, Zhao A. Actions for reducing US emissions at least 50% by 2030. Science. 2022;376(6596):922–4. https://​doi.​org/​10.​1126/​science.​abn0661. Publisher: American Association for the Advancement of Science. Accessed 13 July 2023.
12.
Zurück zum Zitat Yalew SG, Vliet MTH, Gernaat DEHJ, Ludwig F, Miara A, Park C, Byers E, De Cian E, Piontek F, Iyer G, Mouratiadou I, Glynn J, Hejazi M, Dessens O, Rochedo P, Pietzcker R, Schaeffer R, Fujimori S, Dasgupta S, Mima S, Silva SRS, Chaturvedi V, Vautard R, Vuuren DP. Impacts of climate change on energy systems in global and regional scenarios. Nat Energy. 2020;5(10):794–802. https://doi.org/10.1038/s41560-020-0664-z. Number: 10 Publisher: Nature Publishing Group. Accessed 13 Mar 2023. Yalew SG, Vliet MTH, Gernaat DEHJ, Ludwig F, Miara A, Park C, Byers E, De Cian E, Piontek F, Iyer G, Mouratiadou I, Glynn J, Hejazi M, Dessens O, Rochedo P, Pietzcker R, Schaeffer R, Fujimori S, Dasgupta S, Mima S, Silva SRS, Chaturvedi V, Vautard R, Vuuren DP. Impacts of climate change on energy systems in global and regional scenarios. Nat Energy. 2020;5(10):794–802. https://​doi.​org/​10.​1038/​s41560-020-0664-z. Number: 10 Publisher: Nature Publishing Group. Accessed 13 Mar 2023.
14.
Zurück zum Zitat Fodstad M, Granado P, Hellemo L, Knudsen BR, Pisciella P, Silvast A, Bordin C, Schmidt S, Straus J. Next frontiers in energy system modelling: a review on challenges and the state of the art. Renew Sustain Energy Rev. 2022;160:112246. https://doi.org/10.1016/j.rser.2022.112246. Accessed 14 July 2023. Fodstad M, Granado P, Hellemo L, Knudsen BR, Pisciella P, Silvast A, Bordin C, Schmidt S, Straus J. Next frontiers in energy system modelling: a review on challenges and the state of the art. Renew Sustain Energy Rev. 2022;160:112246. https://​doi.​org/​10.​1016/​j.​rser.​2022.​112246. Accessed 14 July 2023.
16.
17.
Zurück zum Zitat Kriegler E, Luderer G, Bauer N, Baumstark L, Fujimori S, Popp A, Rogelj J, Strefler J, Vuuren DP. Pathways limiting warming to 1.5\(^\circ \)C: a tale of turning around in no time? Phil Trans R Soc A Math Phys Eng Sci. 2018;376(2119):20160457. https://doi.org/10.1098/rsta.2016.0457. Publisher: Royal Society. Accessed 14 July 2023 Kriegler E, Luderer G, Bauer N, Baumstark L, Fujimori S, Popp A, Rogelj J, Strefler J, Vuuren DP. Pathways limiting warming to 1.5\(^\circ \)C: a tale of turning around in no time? Phil Trans R Soc A Math Phys Eng Sci. 2018;376(2119):20160457. https://​doi.​org/​10.​1098/​rsta.​2016.​0457. Publisher: Royal Society. Accessed 14 July 2023
18.
Zurück zum Zitat Rogelj J, Popp A, Calvin KV, Luderer G, Emmerling J, Gernaat D, Fujimori S, Strefler J, Hasegawa T, Marangoni G, Krey V, Kriegler E, Riahi K, Vuuren DP, Doelman J, Drouet L, Edmonds J, Fricko O, Harmsen M, Havlík P, Humpenöder F, Stehfest E, Tavoni M. Scenarios towards limiting global mean temperature increase below 1.5\(^\circ \)C. Nat Clim Chang. 2018;8(4):325–332. https://doi.org/10.1038/s41558-018-0091-3. Number: 4 Publisher: Nature Publishing Group. Accessed 14 July 2023 Rogelj J, Popp A, Calvin KV, Luderer G, Emmerling J, Gernaat D, Fujimori S, Strefler J, Hasegawa T, Marangoni G, Krey V, Kriegler E, Riahi K, Vuuren DP, Doelman J, Drouet L, Edmonds J, Fricko O, Harmsen M, Havlík P, Humpenöder F, Stehfest E, Tavoni M. Scenarios towards limiting global mean temperature increase below 1.5\(^\circ \)C. Nat Clim Chang. 2018;8(4):325–332. https://​doi.​org/​10.​1038/​s41558-018-0091-3. Number: 4 Publisher: Nature Publishing Group. Accessed 14 July 2023
21.
Zurück zum Zitat Shaner MR, Davis SJ, Lewis NS, Caldeira K. Geophysical constraints on the reliability of solar and wind power in the United States. Energy Environ Sci. 2018;11(4):914–25. https://doi.org/10.1039/C7EE03029K. Publisher: Royal Society of Chemistry. Accessed 13 Mar 2023. Shaner MR, Davis SJ, Lewis NS, Caldeira K. Geophysical constraints on the reliability of solar and wind power in the United States. Energy Environ Sci. 2018;11(4):914–25. https://​doi.​org/​10.​1039/​C7EE03029K. Publisher: Royal Society of Chemistry. Accessed 13 Mar 2023.
22.
Zurück zum Zitat Tong D, Farnham DJ, Duan L, Zhang Q, Lewis NS, Caldeira K, Davis SJ. Geophysical constraints on the reliability of solar and wind power worldwide. Nat Commun. 2021;12(1):6146. https://doi.org/10.1038/s41467-021-26355-z. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Mar 2023. Tong D, Farnham DJ, Duan L, Zhang Q, Lewis NS, Caldeira K, Davis SJ. Geophysical constraints on the reliability of solar and wind power worldwide. Nat Commun. 2021;12(1):6146. https://​doi.​org/​10.​1038/​s41467-021-26355-z. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Mar 2023.
23.
24.
Zurück zum Zitat Zhou Y, Hejazi M, Smith S, Edmonds J, Li H, Clarke L, Calvin K, Thomson A. A comprehensive view of global potential for hydro-generated electricity. Energy Environ Sci. 2015;8(9):2622–33. https://doi.org/10.1039/C5EE00888C. Accessed 14 Jan 2023. Zhou Y, Hejazi M, Smith S, Edmonds J, Li H, Clarke L, Calvin K, Thomson A. A comprehensive view of global potential for hydro-generated electricity. Energy Environ Sci. 2015;8(9):2622–33. https://​doi.​org/​10.​1039/​C5EE00888C. Accessed 14 Jan 2023.
25.
Zurück zum Zitat Bogdanov D, Farfan J, Sadovskaia K, Aghahosseini A, Child M, Gulagi A, Oyewo AS, Souza Noel Simas Barbosa L, Breyer C. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat Commun. 2019;10(1):1077. https://doi.org/10.1038/s41467-019-08855-1. Number: 1 Publisher: Nature Publishing Group Bogdanov D, Farfan J, Sadovskaia K, Aghahosseini A, Child M, Gulagi A, Oyewo AS, Souza Noel Simas Barbosa L, Breyer C. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat Commun. 2019;10(1):1077. https://​doi.​org/​10.​1038/​s41467-019-08855-1. Number: 1 Publisher: Nature Publishing Group
26.
Zurück zum Zitat Larson E, Greig C, Jenkins JD, Mayfield E, Pascale A, Zhang C, Drossman J. Net-zero America: potential pathways, infrastructure, and impacts. Technical report, Princeton, NJ, Princeton University; 2021. Larson E, Greig C, Jenkins JD, Mayfield E, Pascale A, Zhang C, Drossman J. Net-zero America: potential pathways, infrastructure, and impacts. Technical report, Princeton, NJ, Princeton University; 2021.
27.
Zurück zum Zitat Wang H, Feng K, Wang P, Yang Y, Sun L, Yang F, Chen W-Q, Zhang Y, Li J. China’s electric vehicle and climate ambitions jeopardized by surging critical material prices. Nat Commun. 2023;14(1):1246. https://doi.org/10.1038/s41467-023-36957-4. Number: 1 Publisher: Nature Publishing Group. Accessed 14 Mar 2023 Wang H, Feng K, Wang P, Yang Y, Sun L, Yang F, Chen W-Q, Zhang Y, Li J. China’s electric vehicle and climate ambitions jeopardized by surging critical material prices. Nat Commun. 2023;14(1):1246. https://​doi.​org/​10.​1038/​s41467-023-36957-4. Number: 1 Publisher: Nature Publishing Group. Accessed 14 Mar 2023
28.
Zurück zum Zitat Moerenhout T, Lee LY, Glynn J. Critical mineral supply constraints and their impact on energy system models. Technical report, center on global energy policy at Columbia University: New York; 2023 Moerenhout T, Lee LY, Glynn J. Critical mineral supply constraints and their impact on energy system models. Technical report, center on global energy policy at Columbia University: New York; 2023
29.
Zurück zum Zitat IEA: Critical Minerals Market Review 2023. Technical report, international energy agency (IEA): Paris; 2023 IEA: Critical Minerals Market Review 2023. Technical report, international energy agency (IEA): Paris; 2023
30.
Zurück zum Zitat Fu R, Peng K, Wang P, Zhong H, Chen B, Zhang P, Zhang Y, Chen D, Liu X, Feng K, Li J. Tracing metal footprints via global renewable power value chains. Nat Commun. 2023;14(1):3703. https://doi.org/10.1038/s41467-023-39356-x. Number: 1 Publisher: Nature Publishing Group. Accessed 14 July 2023. Fu R, Peng K, Wang P, Zhong H, Chen B, Zhang P, Zhang Y, Chen D, Liu X, Feng K, Li J. Tracing metal footprints via global renewable power value chains. Nat Commun. 2023;14(1):3703. https://​doi.​org/​10.​1038/​s41467-023-39356-x. Number: 1 Publisher: Nature Publishing Group. Accessed 14 July 2023.
31.
33.
Zurück zum Zitat Lohrmann A, Farfan J, Caldera U, Lohrmann C, Breyer C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nature Energy. 2019;4(12):1040–8. https://doi.org/10.1038/s41560-019-0501-4. Number: 12 Publisher: Nature Publishing Group. Accessed 19 Mar 2023 Lohrmann A, Farfan J, Caldera U, Lohrmann C, Breyer C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nature Energy. 2019;4(12):1040–8. https://​doi.​org/​10.​1038/​s41560-019-0501-4. Number: 12 Publisher: Nature Publishing Group. Accessed 19 Mar 2023
34.
Zurück zum Zitat Byers EA, Coxon G, Freer J, Hall JW. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nat Commun. 2020;11(1):2239. https://doi.org/10.1038/s41467-020-16012-2. Number: 1 Publisher: Nature Publishing Group. Accessed 17 Mar 2023. Byers EA, Coxon G, Freer J, Hall JW. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nat Commun. 2020;11(1):2239. https://​doi.​org/​10.​1038/​s41467-020-16012-2. Number: 1 Publisher: Nature Publishing Group. Accessed 17 Mar 2023.
42.
Zurück zum Zitat Jin Y, Hu S, Ziegler AD, Gibson L, Campbell JE, Xu R, Chen D, Zhu K, Zheng Y, Ye B, Ye F, Zeng Z. Energy production and water savings from floating solar photovoltaics on global reservoirs. Nat Sustain. 2023;1–10. https://doi.org/10.1038/s41893-023-01089-6. Publisher: Nature Publishing Group. Accessed 17 Mar 2023 Jin Y, Hu S, Ziegler AD, Gibson L, Campbell JE, Xu R, Chen D, Zhu K, Zheng Y, Ye B, Ye F, Zeng Z. Energy production and water savings from floating solar photovoltaics on global reservoirs. Nat Sustain. 2023;1–10. https://​doi.​org/​10.​1038/​s41893-023-01089-6. Publisher: Nature Publishing Group. Accessed 17 Mar 2023
45.
Zurück zum Zitat Auffhammer M, Baylis P, Hausman CH. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc Natl Acad Sci. 2017;114(8):1886–91. https://doi.org/10.1073/pnas.1613193114. Publisher: Proceedings of the National Academy of Sciences. Accessed 12 Aug 2023. Auffhammer M, Baylis P, Hausman CH. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc Natl Acad Sci. 2017;114(8):1886–91. https://​doi.​org/​10.​1073/​pnas.​1613193114. Publisher: Proceedings of the National Academy of Sciences. Accessed 12 Aug 2023.
50.
52.
Zurück zum Zitat Lee J, Dessler AE. The impact of neglecting climate change and variability on ERCOTA’s forecasts of electricity demand in Texas. Weather Clim Soc. 2022;14(2):499–505. https://doi.org/10.1175/WCAS-D-21-0140.1. Publisher: American Meteorological Society Section: Weather, Climate, and Society. Accessed 13 Aug 2023 Lee J, Dessler AE. The impact of neglecting climate change and variability on ERCOTA’s forecasts of electricity demand in Texas. Weather Clim Soc. 2022;14(2):499–505. https://​doi.​org/​10.​1175/​WCAS-D-21-0140.​1. Publisher: American Meteorological Society Section: Weather, Climate, and Society. Accessed 13 Aug 2023
59.
Zurück zum Zitat Turner SWD, Voisin N, Fazio J, Hua D, Jourabchi M. Compound climate events transform electrical power shortfall risk in the Pacific Northwest. Nat Commun. 2019;10(1):8. https://doi.org/10.1038/s41467-018-07894-4. Number: 1 Publisher: Nature Publishing Group. Accessed 17 Mar 2023. Turner SWD, Voisin N, Fazio J, Hua D, Jourabchi M. Compound climate events transform electrical power shortfall risk in the Pacific Northwest. Nat Commun. 2019;10(1):8. https://​doi.​org/​10.​1038/​s41467-018-07894-4. Number: 1 Publisher: Nature Publishing Group. Accessed 17 Mar 2023.
61.
Zurück zum Zitat Bataille C, Waisman H, Briand Y, Svensson J, Vogt-Schilb A, Jaramillo M, Delgado R, Arguello R, Clarke L, Wild T, Lallana F, Bravo G, Nadal G, Le Treut G, Godinez G, Quiros-Tortos J, Pereira E, Howells M, Buira D, Tovilla J, Farbes J, Ryan J, De La Torre Ugarte D, Collado M, Requejo F, Gomez X, Soria R, Villamar D, Rochedo P, Imperio M. Net-zero deep decarbonization pathways in Latin America: challenges and opportunities. Energy Strategy Rev. 2020;30:100510. https://doi.org/10.1016/j.esr.2020.100510.CrossRef Bataille C, Waisman H, Briand Y, Svensson J, Vogt-Schilb A, Jaramillo M, Delgado R, Arguello R, Clarke L, Wild T, Lallana F, Bravo G, Nadal G, Le Treut G, Godinez G, Quiros-Tortos J, Pereira E, Howells M, Buira D, Tovilla J, Farbes J, Ryan J, De La Torre Ugarte D, Collado M, Requejo F, Gomez X, Soria R, Villamar D, Rochedo P, Imperio M. Net-zero deep decarbonization pathways in Latin America: challenges and opportunities. Energy Strategy Rev. 2020;30:100510. https://​doi.​org/​10.​1016/​j.​esr.​2020.​100510.CrossRef
62.
Zurück zum Zitat Binsted M, Iyer G, Edmonds J, Vogt-Schilb A, Arguello R, Cadena A, Delgado R, Feijoo F, Lucena AFP, McJeon H, Miralles-Wilhelm F, Sharma A. Stranded asset implications of the Paris Agreement in Latin America and the Caribbean. Environ Res Lett. 2020;15(4):044026. https://doi.org/10.1088/1748-9326/ab506d. Publisher: IOP Publishing Binsted M, Iyer G, Edmonds J, Vogt-Schilb A, Arguello R, Cadena A, Delgado R, Feijoo F, Lucena AFP, McJeon H, Miralles-Wilhelm F, Sharma A. Stranded asset implications of the Paris Agreement in Latin America and the Caribbean. Environ Res Lett. 2020;15(4):044026. https://​doi.​org/​10.​1088/​1748-9326/​ab506d. Publisher: IOP Publishing
63.
Zurück zum Zitat Silva SR, Hejazi MI, Iyer G, Wild TB, Binsted M, Miralles-Wilhelm F, Patel P, Snyder AC, Vernon CR. Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean. Nat Commun. 2021;12(1):1276. https://doi.org/10.1038/s41467-021-21502-y. Number: 1 Publisher: Nature Publishing Group. Silva SR, Hejazi MI, Iyer G, Wild TB, Binsted M, Miralles-Wilhelm F, Patel P, Snyder AC, Vernon CR. Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean. Nat Commun. 2021;12(1):1276. https://​doi.​org/​10.​1038/​s41467-021-21502-y. Number: 1 Publisher: Nature Publishing Group.
65.
Zurück zum Zitat Deshmukh R, Phadke A, Callaway DS. Least-cost targets and avoided fossil fuel capacity in India’s pursuit of renewable energy. Proc Natl Acad Sci. 2021;118(13):2008128118. https://doi.org/10.1073/pnas.2008128118. Publisher: Proceedings of the National Academy of Sciences. Accessed 02 Mar 2023. Deshmukh R, Phadke A, Callaway DS. Least-cost targets and avoided fossil fuel capacity in India’s pursuit of renewable energy. Proc Natl Acad Sci. 2021;118(13):2008128118. https://​doi.​org/​10.​1073/​pnas.​2008128118. Publisher: Proceedings of the National Academy of Sciences. Accessed 02 Mar 2023.
66.
67.
Zurück zum Zitat ...Xu R, Zeng Z, Pan M, Ziegler AD, Holden J, Spracklen DV, Brown LE, He X, Chen D, Ye B, Xu H, Jerez S, Zheng C, Liu J, Lin P, Yang Y, Zou J, Wang D, Gu M, Yang Z, Li D, Huang J, Lakshmi V, Wood EF. A global-scale framework for hydropower development incorporating strict environmental constraints. Nat Water. 2023;1(1):113–22. https://doi.org/10.1038/s44221-022-00004-1. Accessed 14 Feb 2023 ...Xu R, Zeng Z, Pan M, Ziegler AD, Holden J, Spracklen DV, Brown LE, He X, Chen D, Ye B, Xu H, Jerez S, Zheng C, Liu J, Lin P, Yang Y, Zou J, Wang D, Gu M, Yang Z, Li D, Huang J, Lakshmi V, Wood EF. A global-scale framework for hydropower development incorporating strict environmental constraints. Nat Water. 2023;1(1):113–22. https://​doi.​org/​10.​1038/​s44221-022-00004-1. Accessed 14 Feb 2023
68.
Zurück zum Zitat Arias ME, Farinosi F, Lee E, Livino A, Briscoe J, Moorcroft PR. Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon. Nat Sustain. 2020;3(6):430–6. https://doi.org/10.1038/s41893-020-0492-y. Number: 6 Publisher: Nature Publishing Group. Accessed 28 Feb 2023. Arias ME, Farinosi F, Lee E, Livino A, Briscoe J, Moorcroft PR. Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon. Nat Sustain. 2020;3(6):430–6. https://​doi.​org/​10.​1038/​s41893-020-0492-y. Number: 6 Publisher: Nature Publishing Group. Accessed 28 Feb 2023.
73.
Zurück zum Zitat Tiwari AD, Pokhrel Y, Kramer D, Akhter T, Tang Q, Liu J, Qi J, Loc HH, Lakshmi V. A synthesis of hydroclimatic, ecological, and socioeconomic data for transdisciplinary research in the Mekong. Sci Data. 2023;10(1):283. https://doi.org/10.1038/s41597-023-02193-0. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Aug 2023. Tiwari AD, Pokhrel Y, Kramer D, Akhter T, Tang Q, Liu J, Qi J, Loc HH, Lakshmi V. A synthesis of hydroclimatic, ecological, and socioeconomic data for transdisciplinary research in the Mekong. Sci Data. 2023;10(1):283. https://​doi.​org/​10.​1038/​s41597-023-02193-0. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Aug 2023.
74.
Zurück zum Zitat Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, Babu S, Borrelli P, Cheng L, Crochetiere H, Ehalt Macedo H, Filgueiras R, Goichot M, Higgins J, Hogan Z, Lip B, McClain ME, Meng J, Mulligan M, Nilsson C, Olden JD, Opperman JJ, Petry P, Reidy Liermann C, Sáenz L, Salinas-Rodríguez S, Schelle P, Schmitt RJP, Snider J, Tan F, Tockner K, Valdujo PH, Soesbergen A, Zarfl C. Mapping the world’s free-flowing rivers. Nature. 2019;569(7755):215–21. https://doi.org/10.1038/s41586-019-1111-9 Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, Babu S, Borrelli P, Cheng L, Crochetiere H, Ehalt Macedo H, Filgueiras R, Goichot M, Higgins J, Hogan Z, Lip B, McClain ME, Meng J, Mulligan M, Nilsson C, Olden JD, Opperman JJ, Petry P, Reidy Liermann C, Sáenz L, Salinas-Rodríguez S, Schelle P, Schmitt RJP, Snider J, Tan F, Tockner K, Valdujo PH, Soesbergen A, Zarfl C. Mapping the world’s free-flowing rivers. Nature. 2019;569(7755):215–21. https://​doi.​org/​10.​1038/​s41586-019-1111-9
75.
Zurück zum Zitat Flecker AS, Shi Q, Almeida RM, Angarita H, Gomes-Selman JM, García-Villacorta R, Sethi SA, Thomas SA, Poff NL, Forsberg BR, Heilpern SA, Hamilton SK, Abad JD, Anderson EP, Barros N, Bernal IC, Bernstein R, Cañas CM, Dangles O, Encalada AC, Fleischmann AS, Goulding M, Higgins J, Jézéquel C, Larson EI, McIntyre PB, Melack JM, Montoya M, Oberdorff T, Paiva R, Perez G, Rappazzo BH, Steinschneider S, Torres S, Varese M, Walter MT, Wu X, Xue Y, Zapata-Ríos XE, Gomes CP. Reducing adverse impacts of Amazon hydropower expansion. Science. 2022;375(6582):753–60. https://doi.org/10.1126/science.abj4017. Publisher: American Association for the Advancement of Science. Flecker AS, Shi Q, Almeida RM, Angarita H, Gomes-Selman JM, García-Villacorta R, Sethi SA, Thomas SA, Poff NL, Forsberg BR, Heilpern SA, Hamilton SK, Abad JD, Anderson EP, Barros N, Bernal IC, Bernstein R, Cañas CM, Dangles O, Encalada AC, Fleischmann AS, Goulding M, Higgins J, Jézéquel C, Larson EI, McIntyre PB, Melack JM, Montoya M, Oberdorff T, Paiva R, Perez G, Rappazzo BH, Steinschneider S, Torres S, Varese M, Walter MT, Wu X, Xue Y, Zapata-Ríos XE, Gomes CP. Reducing adverse impacts of Amazon hydropower expansion. Science. 2022;375(6582):753–60. https://​doi.​org/​10.​1126/​science.​abj4017. Publisher: American Association for the Advancement of Science.
76.
Zurück zum Zitat Barbarossa V, Schmitt RJP, Huijbregts MAJ, Zarfl C, King H, Schipper AM. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc Natl Acad Sci. 2020;117(7):3648–55. https://doi.org/10.1073/pnas.1912776117. Publisher: Proceedings of the National Academy of Sciences. Accessed 15 Feb 2023. Barbarossa V, Schmitt RJP, Huijbregts MAJ, Zarfl C, King H, Schipper AM. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc Natl Acad Sci. 2020;117(7):3648–55. https://​doi.​org/​10.​1073/​pnas.​1912776117. Publisher: Proceedings of the National Academy of Sciences. Accessed 15 Feb 2023.
77.
78.
Zurück zum Zitat Fan P, Cho MS, Lin Z, Ouyang Z, Qi J, Chen J, Moran EF. Recently constructed hydropower dams were associated with reduced economic production, population, and greenness in nearby areas. Proc Natl Acad Sci. 2022;119(8):2108038119. https://doi.org/10.1073/pnas.2108038119. Publisher: Proceedings of the National Academy of Sciences. Accessed 15 Feb 2023. Fan P, Cho MS, Lin Z, Ouyang Z, Qi J, Chen J, Moran EF. Recently constructed hydropower dams were associated with reduced economic production, population, and greenness in nearby areas. Proc Natl Acad Sci. 2022;119(8):2108038119. https://​doi.​org/​10.​1073/​pnas.​2108038119. Publisher: Proceedings of the National Academy of Sciences. Accessed 15 Feb 2023.
80.
Zurück zum Zitat Opperman JJ, Carvallo JP, Kelman R, Schmitt RJP, Almeida R, Chapin E, Flecker A, Goichot M, Grill G, Harou JJ, Hartmann J, Higgins J, Kammen D, Martin E, Martins T, Newsock A, Rogéliz C, Raepple J, Sada R, Thieme ML, Harrison D. Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning. Front Environ Sci. 2023;10. Accessed 27 Feb 2023 Opperman JJ, Carvallo JP, Kelman R, Schmitt RJP, Almeida R, Chapin E, Flecker A, Goichot M, Grill G, Harou JJ, Hartmann J, Higgins J, Kammen D, Martin E, Martins T, Newsock A, Rogéliz C, Raepple J, Sada R, Thieme ML, Harrison D. Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning. Front Environ Sci. 2023;10. Accessed 27 Feb 2023
81.
Zurück zum Zitat Galelli S, Dang TD, Ng JY, Chowdhury AFMK, Arias ME. Opportunities to curb hydrological alterations via dam re-operation in the Mekong. Nat Sustain. 2022;5(12):1058–69. https://doi.org/10.1038/s41893-022-00971-z. Number: 12 Publisher: Nature Publishing Group. Accessed 16 Feb 2023. Galelli S, Dang TD, Ng JY, Chowdhury AFMK, Arias ME. Opportunities to curb hydrological alterations via dam re-operation in the Mekong. Nat Sustain. 2022;5(12):1058–69. https://​doi.​org/​10.​1038/​s41893-022-00971-z. Number: 12 Publisher: Nature Publishing Group. Accessed 16 Feb 2023.
82.
Zurück zum Zitat Keller PS, Marcé R, Obrador B, Koschorreck M. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nat Geosci. 2021;14(6):402–8. https://doi.org/10.1038/s41561-021-00734-z. Number: 6 Publisher: Nature Publishing Group. Accessed 15 Aug 2023. Keller PS, Marcé R, Obrador B, Koschorreck M. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nat Geosci. 2021;14(6):402–8. https://​doi.​org/​10.​1038/​s41561-021-00734-z. Number: 6 Publisher: Nature Publishing Group. Accessed 15 Aug 2023.
84.
Zurück zum Zitat Almeida RM, Shi Q, Gomes-Selman JM, Wu X, Xue Y, Angarita H, Barros N, Forsberg BR, García-Villacorta R, Hamilton SK, Melack JM, Montoya M, Perez G, Sethi SA, Gomes CP, Flecker AS. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat Commun. 2019;10(1):4281. https://doi.org/10.1038/s41467-019-12179-5. Number: 1 Publisher: Nature Publishing Group. Accessed 28 Feb 2023 Almeida RM, Shi Q, Gomes-Selman JM, Wu X, Xue Y, Angarita H, Barros N, Forsberg BR, García-Villacorta R, Hamilton SK, Melack JM, Montoya M, Perez G, Sethi SA, Gomes CP, Flecker AS. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat Commun. 2019;10(1):4281. https://​doi.​org/​10.​1038/​s41467-019-12179-5. Number: 1 Publisher: Nature Publishing Group. Accessed 28 Feb 2023
89.
Zurück zum Zitat Wild TB, Khan Z, Zhao M, Suriano M, Bereslawski JL, Roberts P, Casado J, Gaviño-Novillo M, Clarke L, Hejazi M, Miralles-Wilhelm F, Muñoz-Castillo R, Vernon C, Snyder A, Yarlagadda B, Birnbaum A, Lamontagne J, White D, Ojeda-Matos, G.: The implications of global change for the co–evolution of Argentina’s integrated energy-water-land systems. Earth’s Future. 2021;9(8). https://doi.org/10.1029/2020EF001970 Wild TB, Khan Z, Zhao M, Suriano M, Bereslawski JL, Roberts P, Casado J, Gaviño-Novillo M, Clarke L, Hejazi M, Miralles-Wilhelm F, Muñoz-Castillo R, Vernon C, Snyder A, Yarlagadda B, Birnbaum A, Lamontagne J, White D, Ojeda-Matos, G.: The implications of global change for the co–evolution of Argentina’s integrated energy-water-land systems. Earth’s Future. 2021;9(8). https://​doi.​org/​10.​1029/​2020EF001970
90.
Zurück zum Zitat Khan Z, Wild TB, Silva Carrazzone ME, Gaudioso R, Mascari MP, Bianchi F, Weinstein F, Pérez F, Pérez W, Miralles-Wilhelm F, Clarke L, Hejazi M, Vernon CR, Kyle P, Edmonds J, Muñoz-Castillo R. Integrated energy-water-land nexus planning to guide national policy: an example from Uruguay. Environ Res Lett. 2020;15(9): 094014. https://doi.org/10.1088/1748-9326/ab9389.CrossRef Khan Z, Wild TB, Silva Carrazzone ME, Gaudioso R, Mascari MP, Bianchi F, Weinstein F, Pérez F, Pérez W, Miralles-Wilhelm F, Clarke L, Hejazi M, Vernon CR, Kyle P, Edmonds J, Muñoz-Castillo R. Integrated energy-water-land nexus planning to guide national policy: an example from Uruguay. Environ Res Lett. 2020;15(9): 094014. https://​doi.​org/​10.​1088/​1748-9326/​ab9389.CrossRef
93.
Zurück zum Zitat Schmitt RJP, Bizzi S, Castelletti A, Opperman JJ, Kondolf GM. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci Adv. 2019;5(10):2175. https://doi.org/10.1126/sciadv.aaw2175. Publisher: American Association for the Advancement of Science. Accessed 18 Feb 2023. Schmitt RJP, Bizzi S, Castelletti A, Opperman JJ, Kondolf GM. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci Adv. 2019;5(10):2175. https://​doi.​org/​10.​1126/​sciadv.​aaw2175. Publisher: American Association for the Advancement of Science. Accessed 18 Feb 2023.
94.
95.
Zurück zum Zitat Sterl S, Vanderkelen I, Chawanda CJ, Russo D, Brecha RJ, Griensven A, Lipzig NPM, Thiery W. Smart renewable electricity portfolios in West Africa. Nat Sustain. 2020;3(9):710–9. https://doi.org/10.1038/s41893-020-0539-0. Number: 9 Publisher: Nature Publishing Group. Accessed 28 Feb 2023. Sterl S, Vanderkelen I, Chawanda CJ, Russo D, Brecha RJ, Griensven A, Lipzig NPM, Thiery W. Smart renewable electricity portfolios in West Africa. Nat Sustain. 2020;3(9):710–9. https://​doi.​org/​10.​1038/​s41893-020-0539-0. Number: 9 Publisher: Nature Publishing Group. Accessed 28 Feb 2023.
96.
Zurück zum Zitat Sterl S, Fadly D, Liersch S, Koch H, Thiery W. Linking solar and wind power in eastern Africa with operation of the Grand Ethiopian Renaissance Dam. Nat Energy. 2021;6(4):407–18. https://doi.org/10.1038/s41560-021-00799-5. Number: 4 Publisher: Nature Publishing Group. Accessed 28 Feb 2023. Sterl S, Fadly D, Liersch S, Koch H, Thiery W. Linking solar and wind power in eastern Africa with operation of the Grand Ethiopian Renaissance Dam. Nat Energy. 2021;6(4):407–18. https://​doi.​org/​10.​1038/​s41560-021-00799-5. Number: 4 Publisher: Nature Publishing Group. Accessed 28 Feb 2023.
97.
Zurück zum Zitat Carlino A, Wildemeersch M, Chawanda CJ, Giuliani M, Sterl S, Thiery W, Griensven A, Castelletti A. Declining cost of renewables and climate change curb the need for African hydropower expansion. Science. 2023;381(6658):5848. https://doi.org/10.1126/science.adf5848. Publisher: American Association for the Advancement of Science. Accessed 11 Aug 2023. Carlino A, Wildemeersch M, Chawanda CJ, Giuliani M, Sterl S, Thiery W, Griensven A, Castelletti A. Declining cost of renewables and climate change curb the need for African hydropower expansion. Science. 2023;381(6658):5848. https://​doi.​org/​10.​1126/​science.​adf5848. Publisher: American Association for the Advancement of Science. Accessed 11 Aug 2023.
98.
Zurück zum Zitat Siala K, Chowdhury AK, Dang T, Galelli S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat Commun. 2021;12(4159):00003. Siala K, Chowdhury AK, Dang T, Galelli S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat Commun. 2021;12(4159):00003.
99.
Zurück zum Zitat Hernandez RR, Hoffacker MK, Murphy-Mariscal ML, Wu GC, Allen MF. Solar energy development impacts on land cover change and protected areas. Proc Natl Acad Sci. 2015;112(44):13579–84. https://doi.org/10.1073/pnas.1517656112. Publisher: Proceedings of the National Academy of Sciences. Accessed 14 July 2023. Hernandez RR, Hoffacker MK, Murphy-Mariscal ML, Wu GC, Allen MF. Solar energy development impacts on land cover change and protected areas. Proc Natl Acad Sci. 2015;112(44):13579–84. https://​doi.​org/​10.​1073/​pnas.​1517656112. Publisher: Proceedings of the National Academy of Sciences. Accessed 14 July 2023.
100.
Zurück zum Zitat Jacobson MZ, Krauland A-Kv, Coughlin SJ, Dukas E, Nelson AJH, Palmer FC, Rasmussen KR. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ Sci. 2022. https://doi.org/10.1039/D2EE00722C. Publisher: The Royal Society of Chemistry Jacobson MZ, Krauland A-Kv, Coughlin SJ, Dukas E, Nelson AJH, Palmer FC, Rasmussen KR. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ Sci. 2022. https://​doi.​org/​10.​1039/​D2EE00722C. Publisher: The Royal Society of Chemistry
102.
Zurück zum Zitat Wu GC, Torn MS, Williams JH. Incorporating land-use requirements and environmental constraints in low-carbon electricity planning for California. Enviro Sci Technol. 2015;49(4):2013–21. https://doi.org/10.1021/es502979v. Publisher: American Chemical Society. Accessed 14 July 2023. Wu GC, Torn MS, Williams JH. Incorporating land-use requirements and environmental constraints in low-carbon electricity planning for California. Enviro Sci Technol. 2015;49(4):2013–21. https://​doi.​org/​10.​1021/​es502979v. Publisher: American Chemical Society. Accessed 14 July 2023.
103.
Zurück zum Zitat Nøland JK, Auxepaules J, Rousset A, Perney B, Falletti G. Spatial energy density of large-scale electricity generation from power sources worldwide. Sci Rep. 2022;12(1):21280. https://doi.org/10.1038/s41598-022-25341-9. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Mar 2023. Nøland JK, Auxepaules J, Rousset A, Perney B, Falletti G. Spatial energy density of large-scale electricity generation from power sources worldwide. Sci Rep. 2022;12(1):21280. https://​doi.​org/​10.​1038/​s41598-022-25341-9. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Mar 2023.
105.
Zurück zum Zitat Schomberg AC, Bringezu S, Flörke M, Biederbick H. Spatially explicit life cycle assessments reveal hotspots of environmental impacts from renewable electricity generation. Commun Earth Environ. 2022;3(1):1–14. https://doi.org/10.1038/s43247-022-00521-7. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Mar 2023. Schomberg AC, Bringezu S, Flörke M, Biederbick H. Spatially explicit life cycle assessments reveal hotspots of environmental impacts from renewable electricity generation. Commun Earth Environ. 2022;3(1):1–14. https://​doi.​org/​10.​1038/​s43247-022-00521-7. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Mar 2023.
109.
Zurück zum Zitat Ross E, Day M, Ivanova C, McLeod A, Lockshin J. Intersections of disadvantaged communities and renewable energy potential: data set and analysis to inform equitable investment prioritization in the United States. Renew Energy Focus. 2022;41:1–14. https://doi.org/10.1016/j.ref.2022.02.002. Accessed 26 Aug 2023. Ross E, Day M, Ivanova C, McLeod A, Lockshin J. Intersections of disadvantaged communities and renewable energy potential: data set and analysis to inform equitable investment prioritization in the United States. Renew Energy Focus. 2022;41:1–14. https://​doi.​org/​10.​1016/​j.​ref.​2022.​02.​002. Accessed 26 Aug 2023.
110.
Zurück zum Zitat Sterl S, Hussain B, Miketa A, Li Y, Merven B, Ben Ticha MB, Elabbas MAE, Thiery W, Russo D. An all-Africa dataset of energy model “supply regions” for solar photovoltaic and wind power. Sci Data. 2022;9(1):664. https://doi.org/10.1038/s41597-022-01786-5. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Aug 2023. Sterl S, Hussain B, Miketa A, Li Y, Merven B, Ben Ticha MB, Elabbas MAE, Thiery W, Russo D. An all-Africa dataset of energy model “supply regions” for solar photovoltaic and wind power. Sci Data. 2022;9(1):664. https://​doi.​org/​10.​1038/​s41597-022-01786-5. Number: 1 Publisher: Nature Publishing Group. Accessed 13 Aug 2023.
112.
Zurück zum Zitat Wu GC, Deshmukh R, Ndhlukula K, Radojicic T, Reilly-Moman J, Phadke A, Kammen DM, Callaway DS. Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proc Natl Acad Sci. 2017;114(15):3004–12. https://doi.org/10.1073/pnas.1611845114. Publisher: Proceedings of the National Academy of Sciences. Accessed 14 July 2023. Wu GC, Deshmukh R, Ndhlukula K, Radojicic T, Reilly-Moman J, Phadke A, Kammen DM, Callaway DS. Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proc Natl Acad Sci. 2017;114(15):3004–12. https://​doi.​org/​10.​1073/​pnas.​1611845114. Publisher: Proceedings of the National Academy of Sciences. Accessed 14 July 2023.
116.
Zurück zum Zitat Wessel J, Kern JD, Voisin N, Oikonomou K, Haas J. Technology pathways could help drive the U.S. west coast grid’s exposure to hydrometeorological uncertainty. Earth’s Future. 2022;10(1). https://doi.org/10.1029/2021EF002187. Accessed 26 Aug 2023 Wessel J, Kern JD, Voisin N, Oikonomou K, Haas J. Technology pathways could help drive the U.S. west coast grid’s exposure to hydrometeorological uncertainty. Earth’s Future. 2022;10(1). https://​doi.​org/​10.​1029/​2021EF002187. Accessed 26 Aug 2023
118.
Zurück zum Zitat Maclaurin G, Grue N, Anthony L, Heimiller D, Rossol M, Buster G, Williams T. The renewable energy potential (reV) model: a geospatial platform for technical potential and supply curve modeling. Technical Report NREL/TP-6A20-73067, National Renewable Energy Laboratory, Golden: CO; 2019. https://www.nrel.gov/docs/fy19osti/73067.pdf Maclaurin G, Grue N, Anthony L, Heimiller D, Rossol M, Buster G, Williams T. The renewable energy potential (reV) model: a geospatial platform for technical potential and supply curve modeling. Technical Report NREL/TP-6A20-73067, National Renewable Energy Laboratory, Golden: CO; 2019. https://​www.​nrel.​gov/​docs/​fy19osti/​73067.​pdf
122.
Zurück zum Zitat Craig MT, Carreño IL, Rossol M, Hodge B-M, Brancucci C. Effects on power system operations of potential changes in wind and solar generation potential under climate change. Environ Res Lett. 2019;14(3): 034014. https://doi.org/10.1088/1748-9326/aaf93b. Publisher: IOP Publishing. Accessed 28 Aug 2023. Craig MT, Carreño IL, Rossol M, Hodge B-M, Brancucci C. Effects on power system operations of potential changes in wind and solar generation potential under climate change. Environ Res Lett. 2019;14(3): 034014. https://​doi.​org/​10.​1088/​1748-9326/​aaf93b. Publisher: IOP Publishing. Accessed 28 Aug 2023.
126.
Zurück zum Zitat Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N. Greening of the Earth and its drivers. Nat Clim Chang. 2016;6(8):791–5. https://doi.org/10.1038/nclimate3004. Number: 8 Publisher: Nature Publishing Group. Accessed 23 June 2023. Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N. Greening of the Earth and its drivers. Nat Clim Chang. 2016;6(8):791–5. https://​doi.​org/​10.​1038/​nclimate3004. Number: 8 Publisher: Nature Publishing Group. Accessed 23 June 2023.
127.
Zurück zum Zitat Chen C, Riley WJ, Prentice IC, Keenan TF. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc Natl Acad Sci. 2022;119(10):2115627119. https://doi.org/10.1073/pnas.2115627119. Publisher: Proceedings of the National Academy of Sciences. Accessed 23 June 2023. Chen C, Riley WJ, Prentice IC, Keenan TF. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc Natl Acad Sci. 2022;119(10):2115627119. https://​doi.​org/​10.​1073/​pnas.​2115627119. Publisher: Proceedings of the National Academy of Sciences. Accessed 23 June 2023.
128.
Zurück zum Zitat Wang S, Zhang Y, Ju W, Chen JM, Ciais P, Cescatti A, Sardans J, Janssens IA, Wu M, Berry JA, Campbell E, Fernández-Martínez M, Alkama R, Sitch S, Friedlingstein P, Smith WK, Yuan W, He W, Lombardozzi D, Kautz M, Zhu D, Lienert S, Kato E, Poulter B, Sanders TGM, Krüger I, Wang R, Zeng N, Tian H, Vuichard N, Jain AK, Wiltshire A, Haverd V, Goll DS, Peñuelas J. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science. 2020;370(6522):1295–300. https://doi.org/10.1126/science.abb7772. Publisher: American Association for the Advancement of Science. Accessed 23 June 2023. Wang S, Zhang Y, Ju W, Chen JM, Ciais P, Cescatti A, Sardans J, Janssens IA, Wu M, Berry JA, Campbell E, Fernández-Martínez M, Alkama R, Sitch S, Friedlingstein P, Smith WK, Yuan W, He W, Lombardozzi D, Kautz M, Zhu D, Lienert S, Kato E, Poulter B, Sanders TGM, Krüger I, Wang R, Zeng N, Tian H, Vuichard N, Jain AK, Wiltshire A, Haverd V, Goll DS, Peñuelas J. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science. 2020;370(6522):1295–300. https://​doi.​org/​10.​1126/​science.​abb7772. Publisher: American Association for the Advancement of Science. Accessed 23 June 2023.
130.
Zurück zum Zitat Huntingford C, Oliver RJ.Constraints on estimating the CO2 fertilization effect emerge. Nature. 2021;600(7888):224–5. https://doi.org/10.1038/d41586-021-03560-w . Bandiera_abtest: a Cg_type: News And Views Number: 7888 Publisher: Nature Publishing Group Subject_term: Climate change, Climate sciences. Accessed 23 June 2023 Huntingford C, Oliver RJ.Constraints on estimating the CO2 fertilization effect emerge. Nature. 2021;600(7888):224–5. https://​doi.​org/​10.​1038/​d41586-021-03560-w . Bandiera_abtest: a Cg_type: News And Views Number: 7888 Publisher: Nature Publishing Group Subject_term: Climate change, Climate sciences. Accessed 23 June 2023
132.
Zurück zum Zitat Buchholz T, Prisley S, Marland G, Canham C, Sampson N. Uncertainty in projecting GHG emissions from bioenergy. Nat Clim Chang. 2014;4(12):1045–7. https://doi.org/10.1038/nclimate2418. Number: 12 Publisher: Nature Publishing Group. Accessed 22 Aug 2023. Buchholz T, Prisley S, Marland G, Canham C, Sampson N. Uncertainty in projecting GHG emissions from bioenergy. Nat Clim Chang. 2014;4(12):1045–7. https://​doi.​org/​10.​1038/​nclimate2418. Number: 12 Publisher: Nature Publishing Group. Accessed 22 Aug 2023.
133.
Zurück zum Zitat Bauer N, Rose SK, Fujimori S, Vuuren DP, Weyant J, Wise M, Cui Y, Daioglou V, Gidden MJ, Kato E, Kitous A, Leblanc F, Sands R, Sano F, Strefler J, Tsutsui J, Bibas R, Fricko O, Hasegawa T, Klein D, Kurosawa A, Mima S, Muratori M. Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Clim Chang. 2020;163(3):1553–68. https://doi.org/10.1007/s10584-018-2226-y. Accessed 22 Aug 2023. Bauer N, Rose SK, Fujimori S, Vuuren DP, Weyant J, Wise M, Cui Y, Daioglou V, Gidden MJ, Kato E, Kitous A, Leblanc F, Sands R, Sano F, Strefler J, Tsutsui J, Bibas R, Fricko O, Hasegawa T, Klein D, Kurosawa A, Mima S, Muratori M. Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Clim Chang. 2020;163(3):1553–68. https://​doi.​org/​10.​1007/​s10584-018-2226-y. Accessed 22 Aug 2023.
136.
Zurück zum Zitat Chowdhury AFMK, Kern J, Dang TD, Galelli S. PowNet: a network-constrained unit commitment/economic dispatch model for large-scale power systems analysis. 2020;8(1):5. https://doi.org/10.5334/jors.302. Number: 1 Publisher: Ubiquity Press. Accessed 14 Aug 2023 Chowdhury AFMK, Kern J, Dang TD, Galelli S. PowNet: a network-constrained unit commitment/economic dispatch model for large-scale power systems analysis. 2020;8(1):5. https://​doi.​org/​10.​5334/​jors.​302. Number: 1 Publisher: Ubiquity Press. Accessed 14 Aug 2023
137.
Zurück zum Zitat Su Y, Kern JD, Denaro S, Hill J, Reed P, Sun Y, Cohen J, Characklis GW. An open source model for quantifying risks in bulk electric power systems from spatially and temporally correlated hydrometeorological processes. Environ Model Softw. 2020;126: 104667. https://doi.org/10.1016/j.envsoft.2020.104667. Accessed 14 Aug 2023. Su Y, Kern JD, Denaro S, Hill J, Reed P, Sun Y, Cohen J, Characklis GW. An open source model for quantifying risks in bulk electric power systems from spatially and temporally correlated hydrometeorological processes. Environ Model Softw. 2020;126: 104667. https://​doi.​org/​10.​1016/​j.​envsoft.​2020.​104667. Accessed 14 Aug 2023.
140.
Zurück zum Zitat Chowdhury AFMK, Dang TD, Bagchi A, Galelli S. Expected benefits of Laos’ hydropower development curbed by hydroclimatic variability and limited transmission capacity: opportunities to reform. J Water Resour Plan Manag. 2020;146(10):05020019. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001279. Publisher: American Society of Civil Engineers. Chowdhury AFMK, Dang TD, Bagchi A, Galelli S. Expected benefits of Laos’ hydropower development curbed by hydroclimatic variability and limited transmission capacity: opportunities to reform. J Water Resour Plan Manag. 2020;146(10):05020019. https://​doi.​org/​10.​1061/​(ASCE)WR.​1943-5452.​0001279. Publisher: American Society of Civil Engineers.
141.
Zurück zum Zitat Bartos M, Chester M, Johnson N, Gorman B, Eisenberg D, Linkov I, Bates M. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States. Environ Res Lett. 2016;11(11): 114008. https://doi.org/10.1088/1748-9326/11/11/114008. Publisher: IOP Publishing. Accessed 14 Aug 2023. Bartos M, Chester M, Johnson N, Gorman B, Eisenberg D, Linkov I, Bates M. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States. Environ Res Lett. 2016;11(11): 114008. https://​doi.​org/​10.​1088/​1748-9326/​11/​11/​114008. Publisher: IOP Publishing. Accessed 14 Aug 2023.
143.
144.
Zurück zum Zitat Ram M, Bogdanov D, Aghahosseini A, Gulagi A, Oyewo AS, Odai Mensah TN, Child M, Caldera U, Sadovskaia K, Barbosa LDSNS, Fasihi M, Khalili S, Traber T, Breyer C. Global energy transition to 100% renewables by 2050: not fiction, but much needed impetus for developing economies to leapfrog into a sustainable future. Energy. 2022;246:123419. https://doi.org/10.1016/j.energy.2022.123419. Accessed 14 Aug 2023 Ram M, Bogdanov D, Aghahosseini A, Gulagi A, Oyewo AS, Odai Mensah TN, Child M, Caldera U, Sadovskaia K, Barbosa LDSNS, Fasihi M, Khalili S, Traber T, Breyer C. Global energy transition to 100% renewables by 2050: not fiction, but much needed impetus for developing economies to leapfrog into a sustainable future. Energy. 2022;246:123419. https://​doi.​org/​10.​1016/​j.​energy.​2022.​123419. Accessed 14 Aug 2023
147.
Zurück zum Zitat Fuhrman J, Bergero C, Weber M, Monteith S, Wang FM, Clarens AF, Doney SC, Shobe W, McJeon H. Diverse carbon dioxide removal approaches could reduce impacts on the energy-water-land system. Nat Clim Chang. 2023;1–10. https://doi.org/10.1038/s41558-023-01604-9. Publisher: Nature Publishing Group. Accessed 13 Mar 2023 Fuhrman J, Bergero C, Weber M, Monteith S, Wang FM, Clarens AF, Doney SC, Shobe W, McJeon H. Diverse carbon dioxide removal approaches could reduce impacts on the energy-water-land system. Nat Clim Chang. 2023;1–10. https://​doi.​org/​10.​1038/​s41558-023-01604-9. Publisher: Nature Publishing Group. Accessed 13 Mar 2023
152.
Zurück zum Zitat Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, Benson SM, Bradley T, Brouwer J, Chiang Y-M, Clack CTM, Cohen A, Doig S, Edmonds J, Fennell P, Field CB, Hannegan B, Hodge B-M, Hoffert MI, Ingersoll E, Jaramillo P, Lackner KS, Mach KJ, Mastrandrea M, Ogden J, Peterson PF, Sanchez DL, Sperling D, Stagner J, Trancik JE, Yang C-J, Caldeira K. Net-zero emissions energy systems. Science. 2018;360(6396):9793. https://doi.org/10.1126/science.aas9793. Publisher: American Association for the Advancement of Science. Accessed 14 Mar 2023. Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, Benson SM, Bradley T, Brouwer J, Chiang Y-M, Clack CTM, Cohen A, Doig S, Edmonds J, Fennell P, Field CB, Hannegan B, Hodge B-M, Hoffert MI, Ingersoll E, Jaramillo P, Lackner KS, Mach KJ, Mastrandrea M, Ogden J, Peterson PF, Sanchez DL, Sperling D, Stagner J, Trancik JE, Yang C-J, Caldeira K. Net-zero emissions energy systems. Science. 2018;360(6396):9793. https://​doi.​org/​10.​1126/​science.​aas9793. Publisher: American Association for the Advancement of Science. Accessed 14 Mar 2023.
153.
154.
Zurück zum Zitat Grams CM, Beerli R, Pfenninger S, Staffell I, Wernli H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat Clim Chang. 2017;7(8):557–62. https://doi.org/10.1038/nclimate3338. Number: 8 Publisher: Nature Publishing Group. Accessed 21 Aug 2023. Grams CM, Beerli R, Pfenninger S, Staffell I, Wernli H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat Clim Chang. 2017;7(8):557–62. https://​doi.​org/​10.​1038/​nclimate3338. Number: 8 Publisher: Nature Publishing Group. Accessed 21 Aug 2023.
160.
Zurück zum Zitat Hunt JD, Byers E, Wada Y, Parkinson S, Gernaat DEHJ, Langan S, Vuuren DP, Riahi K. Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nat Commun. 2020;11(1):947. https://doi.org/10.1038/s41467-020-14555-y. Number: 1 Publisher: Nature Publishing Group. Accessed 21 Aug 2023. Hunt JD, Byers E, Wada Y, Parkinson S, Gernaat DEHJ, Langan S, Vuuren DP, Riahi K. Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nat Commun. 2020;11(1):947. https://​doi.​org/​10.​1038/​s41467-020-14555-y. Number: 1 Publisher: Nature Publishing Group. Accessed 21 Aug 2023.
167.
171.
Zurück zum Zitat Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny MLJ, Silvano RAM, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere MJr, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbruster J, Thieme ML, Petry P, Zuanon J, Vilara GT, Snoeks J, Ou C, Rainboth W, Pavanelli CS, Akama A, Soesbergen Av, Sáenz L. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science. 2016. https://doi.org/10.1126/science.aac7082. Publisher: American Association for the Advancement of Science. Accessed 30 Dec 2021 Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny MLJ, Silvano RAM, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere MJr, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbruster J, Thieme ML, Petry P, Zuanon J, Vilara GT, Snoeks J, Ou C, Rainboth W, Pavanelli CS, Akama A, Soesbergen Av, Sáenz L. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science. 2016. https://​doi.​org/​10.​1126/​science.​aac7082. Publisher: American Association for the Advancement of Science. Accessed 30 Dec 2021
173.
Zurück zum Zitat Zeighami A, Kern J, Yates AJ, Weber P, Bruno AA. U.S. West Coast droughts and heat waves exacerbate pollution inequality and can evade emission control policies. Nat Commun. 2023;14(1):1415. https://doi.org/10.1038/s41467-023-37080-0. Number: 1 Publisher: Nature Publishing Group. Accessed 25 April 2023 Zeighami A, Kern J, Yates AJ, Weber P, Bruno AA. U.S. West Coast droughts and heat waves exacerbate pollution inequality and can evade emission control policies. Nat Commun. 2023;14(1):1415. https://​doi.​org/​10.​1038/​s41467-023-37080-0. Number: 1 Publisher: Nature Publishing Group. Accessed 25 April 2023
174.
Zurück zum Zitat Freese LM, Chossière GP, Eastham SD, Jenn A, Selin NE. Nuclear power generation phase-outs redistribute US air quality and climate-related mortality risk. Nat Energy. 2023;8(5):492–503. https://doi.org/10.1038/s41560-023-01241-8. Number: 5 Publisher: Nature Publishing Group. Accessed 21 Aug 2023. Freese LM, Chossière GP, Eastham SD, Jenn A, Selin NE. Nuclear power generation phase-outs redistribute US air quality and climate-related mortality risk. Nat Energy. 2023;8(5):492–503. https://​doi.​org/​10.​1038/​s41560-023-01241-8. Number: 5 Publisher: Nature Publishing Group. Accessed 21 Aug 2023.
Metadaten
Titel
Geophysical Constraints on Decarbonized Systems—Building Spatio-Temporal Uncertainties into Future Electricity Grid Planning
verfasst von
AFM Kamal Chowdhury
Thomas Wild
Ranjit Deshmukh
Gokul Iyer
Stefano Galelli
Publikationsdatum
04.12.2023
Verlag
Springer International Publishing
Erschienen in
Current Sustainable/Renewable Energy Reports / Ausgabe 4/2023
Elektronische ISSN: 2196-3010
DOI
https://doi.org/10.1007/s40518-023-00229-y

Weitere Artikel der Ausgabe 4/2023

Current Sustainable/Renewable Energy Reports 4/2023 Zur Ausgabe