Skip to main content
Erschienen in: Rare Metals 3/2019

16.01.2017

Grain growth behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy during isothermal β heat treatments

verfasst von: De-Lai Ouyang, Hai-Ming Du, Xia Cui, Shi-Qiang Lu, Xian-Juan Dong

Erschienen in: Rare Metals | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Isothermal β heat treatments of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy were performed at the temperature of 1040–1240 °C to examine the influence of heating conditions on grain growth of the alloy. The results show that the grain size increases with heating temperature and holding time increasing. Rapid β grain growth of the alloy takes place at the temperature of over 1140 °C. The grain growth kinetics for the alloy follows the classical isothermal grain growth law. The growth time exponent (n) of 0.5651 and activation energy (Q) of 129.6 kJ·mol−1 are determined. Finally, in order to determine the grain size under different heating conditions, the grain growth model of the alloy was established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Zong YY, Shan DB, Xu M, Lv Y. Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation. J Mater Process Technol. 2009;209(4):1988.CrossRef Zong YY, Shan DB, Xu M, Lv Y. Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation. J Mater Process Technol. 2009;209(4):1988.CrossRef
[2]
Zurück zum Zitat Yang J, Song ZM, Lei LM, Zhang GP. Detecting mechanical properties of microstructure units in Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy. Mater Sci Eng A. 2014;617:84.CrossRef Yang J, Song ZM, Lei LM, Zhang GP. Detecting mechanical properties of microstructure units in Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy. Mater Sci Eng A. 2014;617:84.CrossRef
[3]
Zurück zum Zitat Wang KL, Fu MW, Lu SQ, Li X. Study of the dynamic recrystallization of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in β-forging process via finite element method modeling and microstructure characterization. Mater Des. 2011;32(3):1283.CrossRef Wang KL, Fu MW, Lu SQ, Li X. Study of the dynamic recrystallization of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in β-forging process via finite element method modeling and microstructure characterization. Mater Des. 2011;32(3):1283.CrossRef
[4]
Zurück zum Zitat Song ZM, Lei LM, Zhang B, Huang X, Zhang GP. Microstructure dependent fatigue cracking resistance of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy. J Mater Process Technol. 2012;28(7):614. Song ZM, Lei LM, Zhang B, Huang X, Zhang GP. Microstructure dependent fatigue cracking resistance of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy. J Mater Process Technol. 2012;28(7):614.
[5]
Zurück zum Zitat Fan RH, Zhu M, Hui SX, Li DF, Shen J. Influence of heat treatment on microstructure and damage tolerance property in Ti–6Al–2Zr–1Mo–1V. Trans Nonferr Met Soc China. 2007;17(S1):482. Fan RH, Zhu M, Hui SX, Li DF, Shen J. Influence of heat treatment on microstructure and damage tolerance property in Ti–6Al–2Zr–1Mo–1V. Trans Nonferr Met Soc China. 2007;17(S1):482.
[6]
Zurück zum Zitat Verdhan N, Bhende DD, Kapoor R, Chakravartty JK. Effect of microstructure on the fatigue crack growth behaviour of a near-α Ti alloy. Int J Fatigue. 2015;74:46.CrossRef Verdhan N, Bhende DD, Kapoor R, Chakravartty JK. Effect of microstructure on the fatigue crack growth behaviour of a near-α Ti alloy. Int J Fatigue. 2015;74:46.CrossRef
[7]
Zurück zum Zitat Muzvidziwa M, Okazaki M, Suzuki K, Hirano S. Role of microstructure on the fatigue crack propagation behavior of a friction stir welded Ti–6Al–4V. Microporous Mesoporous Mater. 2015;170(2):243. Muzvidziwa M, Okazaki M, Suzuki K, Hirano S. Role of microstructure on the fatigue crack propagation behavior of a friction stir welded Ti–6Al–4V. Microporous Mesoporous Mater. 2015;170(2):243.
[8]
Zurück zum Zitat Zhang J, Cheng X, Li Z. Total fatigue life prediction for Ti-alloys airframe structure based on durability and damage-tolerant design concept. Mater Des. 2010;31(9):4329.CrossRef Zhang J, Cheng X, Li Z. Total fatigue life prediction for Ti-alloys airframe structure based on durability and damage-tolerant design concept. Mater Des. 2010;31(9):4329.CrossRef
[9]
Zurück zum Zitat Shao H, Zhao Y, Ge P, Zeng W. In-situ SEM observations of tensile deformation of the lamellar microstructure in TC21 titanium alloy. Mater Sci Eng A. 2013;559:515.CrossRef Shao H, Zhao Y, Ge P, Zeng W. In-situ SEM observations of tensile deformation of the lamellar microstructure in TC21 titanium alloy. Mater Sci Eng A. 2013;559:515.CrossRef
[10]
Zurück zum Zitat Prasad Y, Seshacharyulu T, Medeiros S, Frazier W. Effect of prior β-grain size on the hot deformation behavior of Ti–6Al–4V: coarse vs coarser. J Mater Eng Perform. 2000;9(2):153.CrossRef Prasad Y, Seshacharyulu T, Medeiros S, Frazier W. Effect of prior β-grain size on the hot deformation behavior of Ti–6Al–4V: coarse vs coarser. J Mater Eng Perform. 2000;9(2):153.CrossRef
[11]
Zurück zum Zitat Wen CE, Yasue K, Lin JG, Zhang YG, Chen CQ. The effect of lamellar spacing on the creep behavior of a fully lamellar TiAl alloy. Intermetallics. 2000;8(5–6):525.CrossRef Wen CE, Yasue K, Lin JG, Zhang YG, Chen CQ. The effect of lamellar spacing on the creep behavior of a fully lamellar TiAl alloy. Intermetallics. 2000;8(5–6):525.CrossRef
[12]
Zurück zum Zitat Tang J, Huang B, Zhou K, Liu W, He Y, Liu Y. Factors affecting the lamellar spacing in two-phase TiAl alloys with fully lamellar microstructures. Mater Res Bull. 2001;36(9):1737.CrossRef Tang J, Huang B, Zhou K, Liu W, He Y, Liu Y. Factors affecting the lamellar spacing in two-phase TiAl alloys with fully lamellar microstructures. Mater Res Bull. 2001;36(9):1737.CrossRef
[13]
Zurück zum Zitat Ma YJ, Liu JR. β-Grain growth and influence of its grain size on damage-tolerance property in titanium alloy. Rare Metal Mater Eng. 2009;38(6):976. Ma YJ, Liu JR. β-Grain growth and influence of its grain size on damage-tolerance property in titanium alloy. Rare Metal Mater Eng. 2009;38(6):976.
[14]
Zurück zum Zitat He SL, Lei XJ, Wang XX, Ma YJ, Wang XZ, Wang DC. Relationship between microstructure and damage tolerance of TA15 titanium alloy. Trans Nonferr Met Soc China. 2010;20(z1):43. He SL, Lei XJ, Wang XX, Ma YJ, Wang XZ, Wang DC. Relationship between microstructure and damage tolerance of TA15 titanium alloy. Trans Nonferr Met Soc China. 2010;20(z1):43.
[15]
Zurück zum Zitat Dang W, Xie XY, Li JS, Hu R, Zhu ZS, Zhang FS, Zhou L. Influence of lamellar microstructure feature on fracture toughness of TC21 alloy. Trans Nonferr Met Soc China. 2010;20(z1):16. Dang W, Xie XY, Li JS, Hu R, Zhu ZS, Zhang FS, Zhou L. Influence of lamellar microstructure feature on fracture toughness of TC21 alloy. Trans Nonferr Met Soc China. 2010;20(z1):16.
[16]
Zurück zum Zitat Wang T, Guo H, Tan L, Yao Z, Zhao Y, Liu P. Beta grain growth behaviour of TG6 and Ti17 titanium alloys. Mater Sci Eng A. 2011;528(21):6375.CrossRef Wang T, Guo H, Tan L, Yao Z, Zhao Y, Liu P. Beta grain growth behaviour of TG6 and Ti17 titanium alloys. Mater Sci Eng A. 2011;528(21):6375.CrossRef
[17]
Zurück zum Zitat Semiatin SL, Soper JC, Sukonnik IM. Grain growth in a conventional titanium alloy during rapid, continuous heat treatment. Scripta Metal Mater. 1994;30(7):951.CrossRef Semiatin SL, Soper JC, Sukonnik IM. Grain growth in a conventional titanium alloy during rapid, continuous heat treatment. Scripta Metal Mater. 1994;30(7):951.CrossRef
[18]
Zurück zum Zitat Ivasishin OM, Semiatin SL, Markovsky PE, Shevchenko SV, Ulshin SV. Grain growth and texture evolution in Ti-6Al-4V during beta annealing under continuous heating conditions. Mater Sci Eng A. 2002;337(1–2):88.CrossRef Ivasishin OM, Semiatin SL, Markovsky PE, Shevchenko SV, Ulshin SV. Grain growth and texture evolution in Ti-6Al-4V during beta annealing under continuous heating conditions. Mater Sci Eng A. 2002;337(1–2):88.CrossRef
[19]
Zurück zum Zitat Guilemany JM, Gil FJ. Kinetic grain growth in Cu–Zn–Al shape memory alloys. J Mater Sci. 1991;26(17):4626.CrossRef Guilemany JM, Gil FJ. Kinetic grain growth in Cu–Zn–Al shape memory alloys. J Mater Sci. 1991;26(17):4626.CrossRef
[20]
Zurück zum Zitat Gil FJ, Picas JA, Manero JM, Forn A, Planell JA. Effect of the addition of palladium on grain growth kinetics of pure titanium. J Alloys Compd. 1997;260(1):147.CrossRef Gil FJ, Picas JA, Manero JM, Forn A, Planell JA. Effect of the addition of palladium on grain growth kinetics of pure titanium. J Alloys Compd. 1997;260(1):147.CrossRef
[21]
Zurück zum Zitat Gil FX, Rodríguez D, Planell JA. Grain growth kinetics of pure titanium. Scripta Metal Mater. 1995;33(8):1361.CrossRef Gil FX, Rodríguez D, Planell JA. Grain growth kinetics of pure titanium. Scripta Metal Mater. 1995;33(8):1361.CrossRef
[22]
Zurück zum Zitat Gil FJ, Planell JA. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys. Mater Sci Eng A. 2000;283(1–2):17.CrossRef Gil FJ, Planell JA. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys. Mater Sci Eng A. 2000;283(1–2):17.CrossRef
Metadaten
Titel
Grain growth behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy during isothermal β heat treatments
verfasst von
De-Lai Ouyang
Hai-Ming Du
Xia Cui
Shi-Qiang Lu
Xian-Juan Dong
Publikationsdatum
16.01.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0853-x

Weitere Artikel der Ausgabe 3/2019

Rare Metals 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.