Skip to main content
Erschienen in: Journal of Materials Science 4/2017

09.11.2016 | Original Paper

Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries

verfasst von: C. G. Wang, J. D. Liu, X. Li, Z. C. Wang, Y. C. Zhao, Z. D. Zhou, Q. Chen, G. H. Yue

Erschienen in: Journal of Materials Science | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ultrafast rechargeable Li-ion batteries are most urgently needed for personal electronics and commercial application since they could fuel various energy applications. These days, much time and efforts have been paid on the research of ultrafast rechargeable Li-ion batteries, however, less breakthrough was appeared. In this manuscript, the CuCr2O4@RGO, a new-type of nanocomposite material, demonstrates a promising future application when it was used as an anode material of the Li-ion batteries. The Li-ion batteries displays a specific capacity of about 410 mAh g−1 and a coulombic efficiency of approximately 98 % at the discharge/charge current rate of 1000 mA g−1. We also found that the batteries constructed by CuCr2O4@RGO nanocomposites as active anode materials can be fully charged within 5 min, with a current density of 4000 mA g−1 and strive against more than 900 cycles without capacity decay. All the results indicate that the CuCr2O4@RGO nanocomposites with spinel structure of the mixed transitional metal oxide are promising for the anode materials of ultrafast rechargeable Li-ion batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786CrossRef Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786CrossRef
2.
Zurück zum Zitat Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613CrossRef Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613CrossRef
3.
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
4.
Zurück zum Zitat Armand M, Tarascon JM (2008) Issues and challenges facing rechargeable lithium batteries. Nature 451:652–657CrossRef Armand M, Tarascon JM (2008) Issues and challenges facing rechargeable lithium batteries. Nature 451:652–657CrossRef
5.
Zurück zum Zitat Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
6.
Zurück zum Zitat Yue GH, Zhang XQ, Zhao YC, Xie QS, Zhang XX, Peng DL (2014) High performance of Ge@ C nanocables as the anode for lithium ion batteries. RSC Adv 4:21450–21455CrossRef Yue GH, Zhang XQ, Zhao YC, Xie QS, Zhang XX, Peng DL (2014) High performance of Ge@ C nanocables as the anode for lithium ion batteries. RSC Adv 4:21450–21455CrossRef
7.
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef
8.
Zurück zum Zitat Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24:5045–5064CrossRef Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24:5045–5064CrossRef
9.
Zurück zum Zitat Yue GH, Zhao YC, Wang CG, Zhang XX, Zhang XQ, Xie QS (2015) Flower-like nickel oxide nanocomposites anode materials for excellent performance lithium-ion batteries. Electrochim Acta 152:315–322CrossRef Yue GH, Zhao YC, Wang CG, Zhang XX, Zhang XQ, Xie QS (2015) Flower-like nickel oxide nanocomposites anode materials for excellent performance lithium-ion batteries. Electrochim Acta 152:315–322CrossRef
10.
Zurück zum Zitat Wang JJ, Li YL, Sun XL (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy 2:443–467CrossRef Wang JJ, Li YL, Sun XL (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy 2:443–467CrossRef
11.
Zurück zum Zitat Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef
12.
Zurück zum Zitat Yuan C, Wu Hao B, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504CrossRef Yuan C, Wu Hao B, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504CrossRef
13.
Zurück zum Zitat Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74:094105CrossRef Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74:094105CrossRef
14.
Zurück zum Zitat Wang Q, Wang X, Xu J, Xia O, Hou X, Chen D, Wang R, Shen G (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44–51CrossRef Wang Q, Wang X, Xu J, Xia O, Hou X, Chen D, Wang R, Shen G (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44–51CrossRef
15.
Zurück zum Zitat Zhou D, Su X, Boese M, Wang R, Zhang H (2014) Ni (OH)2@Co (OH)2 hollow nanohexagons: controllable synthesis, facet-selected competitive growth and capacitance property. Nano Energy 5:52–59CrossRef Zhou D, Su X, Boese M, Wang R, Zhang H (2014) Ni (OH)2@Co (OH)2 hollow nanohexagons: controllable synthesis, facet-selected competitive growth and capacitance property. Nano Energy 5:52–59CrossRef
16.
Zurück zum Zitat He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695CrossRef He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695CrossRef
17.
Zurück zum Zitat Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sour 172:379–387CrossRef Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sour 172:379–387CrossRef
18.
Zurück zum Zitat Yuan W, Liu X, Li L (2014) Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation. Appl Surf Sci 319:350–357CrossRef Yuan W, Liu X, Li L (2014) Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation. Appl Surf Sci 319:350–357CrossRef
19.
Zurück zum Zitat Acharyya SS, Ghosh S, Tiwari R, Pendem C, Sasaki T, Bal R (2015) Synergistic Effect between ultrasmall Cu (II) oxide and CuCr2O4 spinel nanoparticles in selective hydroxylation of benzene to phenol with air as oxidant. ACS Catal 5:2850–2858CrossRef Acharyya SS, Ghosh S, Tiwari R, Pendem C, Sasaki T, Bal R (2015) Synergistic Effect between ultrasmall Cu (II) oxide and CuCr2O4 spinel nanoparticles in selective hydroxylation of benzene to phenol with air as oxidant. ACS Catal 5:2850–2858CrossRef
20.
Zurück zum Zitat Yan J, Zhang L, Yang H, Tang Y, Lu Zh, Guo S, Dai Y, Han Y, Yao M (2009) CuCr2O4/TiO2 heterojunction for photocatalytic H 2 evolution under simulated sunlight irradiation. J Sol Energy 83:1534–1539CrossRef Yan J, Zhang L, Yang H, Tang Y, Lu Zh, Guo S, Dai Y, Han Y, Yao M (2009) CuCr2O4/TiO2 heterojunction for photocatalytic H 2 evolution under simulated sunlight irradiation. J Sol Energy 83:1534–1539CrossRef
21.
Zurück zum Zitat Bajaj R, Sharma M, Bahadur D (2013) Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans 42:6736–6744CrossRef Bajaj R, Sharma M, Bahadur D (2013) Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans 42:6736–6744CrossRef
22.
Zurück zum Zitat Pan L, Li L, Bao X, Chen Y (2012) Highly photocatalytic activity for p-nitrophenol degradation with spinel-structured CuCr2O4. Micro Nano Lett 5:415–418CrossRef Pan L, Li L, Bao X, Chen Y (2012) Highly photocatalytic activity for p-nitrophenol degradation with spinel-structured CuCr2O4. Micro Nano Lett 5:415–418CrossRef
23.
Zurück zum Zitat Beshkar F, Zinatloo-Ajabshir S, Salavati-Niasari M (2015) Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J Mater Sci 26:5043–5051 Beshkar F, Zinatloo-Ajabshir S, Salavati-Niasari M (2015) Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J Mater Sci 26:5043–5051
24.
Zurück zum Zitat Lao M, Shun J, Shao L, Lin X, Wu K, Shui M, Li P, Long N, Ren Y (2014) Enhanced electrochemical performance of Ag-coated CuCr2O4 as anode material for lithium-ion batteries. Ceram Int 40:11899–11904CrossRef Lao M, Shun J, Shao L, Lin X, Wu K, Shui M, Li P, Long N, Ren Y (2014) Enhanced electrochemical performance of Ag-coated CuCr2O4 as anode material for lithium-ion batteries. Ceram Int 40:11899–11904CrossRef
25.
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef
26.
Zurück zum Zitat Niu Z, Liu L, Zhang L et al (2014) A universal strategy to prepare functional porous graphene hybrid architectures. Adv Mater 26:3681–3687CrossRef Niu Z, Liu L, Zhang L et al (2014) A universal strategy to prepare functional porous graphene hybrid architectures. Adv Mater 26:3681–3687CrossRef
27.
Zurück zum Zitat De S, Mandal S (2013) Surfactant-assisted shape control of copper nanostructures. Colloids Surf A 421:72–83CrossRef De S, Mandal S (2013) Surfactant-assisted shape control of copper nanostructures. Colloids Surf A 421:72–83CrossRef
28.
Zurück zum Zitat Hashempour M, Razavizadeh H, Rezaie H, Hashempour M, Ardestani M (2010) Chemical mechanism of precipitate formation and pH effect on the morphology and thermochemical co-precipitation of W–Cu nanocomposite powders. Mater Chem Phys 123:83–90CrossRef Hashempour M, Razavizadeh H, Rezaie H, Hashempour M, Ardestani M (2010) Chemical mechanism of precipitate formation and pH effect on the morphology and thermochemical co-precipitation of W–Cu nanocomposite powders. Mater Chem Phys 123:83–90CrossRef
29.
Zurück zum Zitat Heaton BT, Jacob C, Page P (1996) Transition metal complexes containing hydrazine and substituted hydrazines. Coordin Chem Rev 154:193–229CrossRef Heaton BT, Jacob C, Page P (1996) Transition metal complexes containing hydrazine and substituted hydrazines. Coordin Chem Rev 154:193–229CrossRef
30.
Zurück zum Zitat Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
31.
Zurück zum Zitat Acharyya SS, Ghosh S, Bal R (2014) Fabrication of three-dimensional (3D) raspberry-like copper chromite spinel catalyst in a facile hydrothermal route and its activity in selective hydroxylation of benzene to phenol. ACS Appl Mater Interface 6:14451–14459CrossRef Acharyya SS, Ghosh S, Bal R (2014) Fabrication of three-dimensional (3D) raspberry-like copper chromite spinel catalyst in a facile hydrothermal route and its activity in selective hydroxylation of benzene to phenol. ACS Appl Mater Interface 6:14451–14459CrossRef
32.
Zurück zum Zitat Tao HC, Fan LZ, Mei Y et al (2011) Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem Commun 13:1332–1335CrossRef Tao HC, Fan LZ, Mei Y et al (2011) Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem Commun 13:1332–1335CrossRef
33.
Zurück zum Zitat Xiao L, Sehlleier YH, Dobrowolny S et al (2015) Si-CNT/rGO Nanoheterostructures as high-performance lithium-ion-battery Anodes. Chem Electro Chem 2:1983–1990 Xiao L, Sehlleier YH, Dobrowolny S et al (2015) Si-CNT/rGO Nanoheterostructures as high-performance lithium-ion-battery Anodes. Chem Electro Chem 2:1983–1990
34.
Zurück zum Zitat Chang J, Huang X, Zhou G et al (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764CrossRef Chang J, Huang X, Zhou G et al (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764CrossRef
35.
Zurück zum Zitat Chen J, Xia XH, Tu JP, Xiong QQ, Yu YX, Wang XL (2012) Co3O4-C core–shell nanowire array as an advanced anode material for lithium ion batteries. J Mater Chem 22:15056–15061CrossRef Chen J, Xia XH, Tu JP, Xiong QQ, Yu YX, Wang XL (2012) Co3O4-C core–shell nanowire array as an advanced anode material for lithium ion batteries. J Mater Chem 22:15056–15061CrossRef
36.
Zurück zum Zitat Guo B, Chi M, Sun XG, Dai S (2012) Mesoporous carbon–Cr2O3 composite as an anode material for lithium ion batteries. J Power Sour 205:495–499CrossRef Guo B, Chi M, Sun XG, Dai S (2012) Mesoporous carbon–Cr2O3 composite as an anode material for lithium ion batteries. J Power Sour 205:495–499CrossRef
37.
Zurück zum Zitat Wang T, Xie G, Zhu J et al (2015) Elastic reduced graphene oxide nanosheets embedded in germanium nanofiber matrix as anode material for high-performance Li-ion battery. Electrochim Acta 186:64–70CrossRef Wang T, Xie G, Zhu J et al (2015) Elastic reduced graphene oxide nanosheets embedded in germanium nanofiber matrix as anode material for high-performance Li-ion battery. Electrochim Acta 186:64–70CrossRef
38.
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2001) Searching for new anode materials for the Li-ion technology: time to deviate from the usual path. J Power Sour 97:235–239CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2001) Searching for new anode materials for the Li-ion technology: time to deviate from the usual path. J Power Sour 97:235–239CrossRef
39.
Zurück zum Zitat Wang SQ, Zhang JY, Chen CH (2007) Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scripta Mater 57:337–340CrossRef Wang SQ, Zhang JY, Chen CH (2007) Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scripta Mater 57:337–340CrossRef
40.
Zurück zum Zitat Xie Q, Ma Y, Zhang X, Guo H, Lu A, Wang L, Yue G, Peng D (2014) Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries. Electrochim Acta 141:374–383CrossRef Xie Q, Ma Y, Zhang X, Guo H, Lu A, Wang L, Yue G, Peng D (2014) Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries. Electrochim Acta 141:374–383CrossRef
41.
Zurück zum Zitat Bijelić M, Liu X, Sun Q et al (2015) Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity. J Mater Chem A 3:14759–14767CrossRef Bijelić M, Liu X, Sun Q et al (2015) Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity. J Mater Chem A 3:14759–14767CrossRef
42.
Zurück zum Zitat Chen H, Wang C, Dong W et al (2014) Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett 15:798–802CrossRef Chen H, Wang C, Dong W et al (2014) Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett 15:798–802CrossRef
43.
Zurück zum Zitat Zhu XD, Tian J, Le SR, Zhang NQ, Sun KN (2013) Improved electrochemical performance of CuCrO2 anode with CNTs as conductive agent for lithium ion batteries. Mater Lett 97:113–116CrossRef Zhu XD, Tian J, Le SR, Zhang NQ, Sun KN (2013) Improved electrochemical performance of CuCrO2 anode with CNTs as conductive agent for lithium ion batteries. Mater Lett 97:113–116CrossRef
Metadaten
Titel
Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries
verfasst von
C. G. Wang
J. D. Liu
X. Li
Z. C. Wang
Y. C. Zhao
Z. D. Zhou
Q. Chen
G. H. Yue
Publikationsdatum
09.11.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0501-8

Weitere Artikel der Ausgabe 4/2017

Journal of Materials Science 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.