Skip to main content

2017 | OriginalPaper | Buchkapitel

Group Activity Selection on Graphs: Parameterized Analysis

verfasst von : Sushmita Gupta, Sanjukta Roy, Saket Saurabh, Meirav Zehavi

Erschienen in: Algorithmic Game Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In varied real-life situations, ranging from carpooling to workload delegation, several activities are to be performed, to which end each activity should be assigned to a group of agents. These situations are captured by the Group Activity Selection Problem (GASP). Notably, relevant relations among agents, such as acquaintanceship or physical distance, can often be modeled naturally using graphs. To exploit this modeling ability, Igarashi, Peters and Elkind [AAAI 17] introduced gGASP. Specifically, it is required that each group would correspond to a connected set of the underlying graph. In addition, to enforce the execution of the activities in practice, no individual should desire to desert its group in favor of joining another group. In other words, the assignment should be Nash stable. In this paper, we study gGASP with Nash stability (gNSGA), whose objective is to compute such an assignment. This problem is computationally hard even on such restricted topologies as paths and stars, which naturally led Igarashi, Bredereck, Peters and Elkind [AAAI 17, AAMAS 17] to the study gNSGA in the framework of parameterized complexity. We take this line of investigation forward, significantly advancing the state-of-the-art. First, we show that gNSGA is NP-hard even when merely one activity is present. In fact, this special case remains NP-hard when we further restrict the graph to have maximum degree \(\varDelta =5\). Consequently, gNSGA is not fixed-parameter tractable (FPT), or even XP, when parameterized by \(p+\varDelta \), where p is the number of activities. However, we are able to design a parameterized algorithm for gNSGA on general graphs with respect to \(p+\varDelta +t\), where t is the maximum size of a group. Finally, we develop an algorithm that solves gNSGA on graphs of bounded treewidth \(\mathbf {tw}\) in time \(4^p\cdot (n\,+\,p)^{\mathcal {O}(\mathbf {tw})}\). Here, \(\varDelta +t\) can be arbitrarily large. Along the way, we resolve several open questions regarding gNSGA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For the sake of consistency, we follow the notations and definitions of [14].
 
2
As we would always work with IR assignments, when specifying preference profiles, we would only explicitly state the alternatives that are preferred more than \(a_{\emptyset }\).
 
3
For standard definitions concerning parameterized complexity, see [3].
 
4
Results labeled with \(\star \) can be found in the full version.
 
5
Note that, wlog, we can assume \(V^\star \) is non empty, otherwise solving Steiner Tree \(^\star \) instance reduces to checking if \(G^\star \) is connected.
 
Literatur
1.
Zurück zum Zitat Aziz, H., Savani, R., Moulin, H.: Hedonic Games. In: Handbook of Computational Social Choice, pp. 356–376. Cambridge University Press (2016). Chap. 15 Aziz, H., Savani, R., Moulin, H.: Hedonic Games. In: Handbook of Computational Social Choice, pp. 356–376. Cambridge University Press (2016). Chap. 15
2.
Zurück zum Zitat Chalkiadakis, G., Greco, G., Markakis, E.: Characteristic function games with restricted agent interactions: core-stability and coalition structures. Artif. Intell. 232, 76–113 (2016)MathSciNetCrossRef Chalkiadakis, G., Greco, G., Markakis, E.: Characteristic function games with restricted agent interactions: core-stability and coalition structures. Artif. Intell. 232, 76–113 (2016)MathSciNetCrossRef
3.
Zurück zum Zitat Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)CrossRef Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)CrossRef
4.
Zurück zum Zitat Darmann, A., Elkind, E., Kurz, S., Lang, J., Schauer, J., Woeginger, G.: Group activity selection problem. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 156–169. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35311-6_12CrossRef Darmann, A., Elkind, E., Kurz, S., Lang, J., Schauer, J., Woeginger, G.: Group activity selection problem. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 156–169. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-35311-6_​12CrossRef
5.
Zurück zum Zitat Diestel, R.: Graph Theory. Springer, Heidelberg (2000)MATH Diestel, R.: Graph Theory. Springer, Heidelberg (2000)MATH
7.
Zurück zum Zitat Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)MathSciNetCrossRef Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)MathSciNetCrossRef
8.
Zurück zum Zitat Gairing, M., Savani, R.: Computing stable outcomes in hedonic games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 174–185. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16170-4_16CrossRef Gairing, M., Savani, R.: Computing stable outcomes in hedonic games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 174–185. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-16170-4_​16CrossRef
9.
Zurück zum Zitat Gairing, M., Savani, R.: Computing stable outcomes in hedonic games with voting-based deviations. In: AAMAS 2011, pp. 559–566 (2011) Gairing, M., Savani, R.: Computing stable outcomes in hedonic games with voting-based deviations. In: AAMAS 2011, pp. 559–566 (2011)
10.
Zurück zum Zitat Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)MathSciNetCrossRef Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)MathSciNetCrossRef
11.
Zurück zum Zitat Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)MATH Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)MATH
12.
Zurück zum Zitat Igarashi, A., Bredereck, R., Elkind, E.: On parameterized complexity of group activity selection problems on social networks. In: AAMAS 2017 (2017) Igarashi, A., Bredereck, R., Elkind, E.: On parameterized complexity of group activity selection problems on social networks. In: AAMAS 2017 (2017)
13.
Zurück zum Zitat Igarashi, A., Elkind, E.: Hedonic games with graph-restricted communication. In: AAMAS 2016, pp. 242–250 (2016) Igarashi, A., Elkind, E.: Hedonic games with graph-restricted communication. In: AAMAS 2016, pp. 242–250 (2016)
14.
Zurück zum Zitat Igarashi, A., Elkind, E., Peters, D.: Group activity selection on social network. In: AAAI 2017, pp. 565–571 (2017) Igarashi, A., Elkind, E., Peters, D.: Group activity selection on social network. In: AAAI 2017, pp. 565–571 (2017)
15.
Zurück zum Zitat Manlove, D.F.: Algorithmics of Matching Under Preferences, vol. 2. WorldScientific, Singapore (2013)CrossRef Manlove, D.F.: Algorithmics of Matching Under Preferences, vol. 2. WorldScientific, Singapore (2013)CrossRef
Metadaten
Titel
Group Activity Selection on Graphs: Parameterized Analysis
verfasst von
Sushmita Gupta
Sanjukta Roy
Saket Saurabh
Meirav Zehavi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-66700-3_9

Premium Partner