Skip to main content
Erschienen in: Neural Computing and Applications 12/2022

12.04.2022 | Original Article

Group-based recurrent neural network for human mobility prediction

verfasst von: Shengren Ke, Meiyi Xie, Hong Zhu, Zhongsheng Cao

Erschienen in: Neural Computing and Applications | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Human mobility prediction is of great significance for analyzing the check-in data generated by location-based applications. Compared with classical prediction methods, recently published ones based on neural networks have made significant improvements, but there still exist problems. First, several valuable characteristics in human mobility, such as the geographic relevance, community, and diversity of user movements, are not fully exploited. Second, the sparsity and imbalance of the check-in data also greatly restrict the prediction performance. To alleviate them, this manuscript proposes a new human mobility prediction method called the group-based multi-features move (GMFMove). This method constructs a prediction model based on recurrent neural network and attention mechanism. Three important factors that influence user movements, i.e., the sequence of location, the category of location, and the geographic relevance of human mobility, are taken into consideration in the model to better capture the mobility preference. Furthermore, GMFMove uses a deep-learning-based matrix factorization to integrate prior information including implicit feedbacks and social relationships for grouping users. Then, for each user group, we use a separate multi-features move (MFMove) model to train it and get the subresult. Finally, all of them are integrated in terms of the weights to obtain the final prediction result. We conduct extensive experiments on four real check-in datasets, and the experimental results show that GMFMove method significantly outperforms other methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Assam R, Seidl T (2014) Check-in location prediction using wavelets and conditional random fields. In: ICDM, pp. 713–718 Assam R, Seidl T (2014) Check-in location prediction using wavelets and conditional random fields. In: ICDM, pp. 713–718
2.
Zurück zum Zitat Assam R, Seidl T (2014) Context-based location clustering and prediction using conditional random fields. In: MUM, pp. 1–10. ACM Assam R, Seidl T (2014) Context-based location clustering and prediction using conditional random fields. In: MUM, pp. 1–10. ACM
4.
Zurück zum Zitat Fan Z, Song X, Jiang R, Chen Q, Shibasaki R (2019) Decentralized attention-based personalized human mobility prediction. Proc ACM Interact Mob Wearable Ubiquitous Technol 3(4):1–26 Fan Z, Song X, Jiang R, Chen Q, Shibasaki R (2019) Decentralized attention-based personalized human mobility prediction. Proc ACM Interact Mob Wearable Ubiquitous Technol 3(4):1–26
5.
Zurück zum Zitat Feng J, Li Y, Zhang C, Sun F, Meng F, Guo A, Jin D (2018) Deepmove: predicting human mobility with attentional recurrent networks. In: WWW, pp. 1459–1468. ACM Feng J, Li Y, Zhang C, Sun F, Meng F, Guo A, Jin D (2018) Deepmove: predicting human mobility with attentional recurrent networks. In: WWW, pp. 1459–1468. ACM
6.
Zurück zum Zitat Gambs S, Killijian MO, del Prado Cortez MNn (2012) Next place prediction using mobility markov chains. In: MPM. ACM Gambs S, Killijian MO, del Prado Cortez MNn (2012) Next place prediction using mobility markov chains. In: MPM. ACM
7.
Zurück zum Zitat Gao Q, Zhou F, Trajcevski G, Zhang K, Zhong T, Zhang F (2019) Predicting human mobility via variational attention. In: WWW, pp. 2750–2756. ACM Gao Q, Zhou F, Trajcevski G, Zhang K, Zhong T, Zhang F (2019) Predicting human mobility via variational attention. In: WWW, pp. 2750–2756. ACM
8.
Zurück zum Zitat Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: SIGKDD, pp. 330–339. ACM Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: SIGKDD, pp. 330–339. ACM
9.
Zurück zum Zitat Grover A, Leskovec J (2016) Node2vec: Scalable feature learning for networks. In: SIGKDD, pp. 855–864. ACM Grover A, Leskovec J (2016) Node2vec: Scalable feature learning for networks. In: SIGKDD, pp. 855–864. ACM
10.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computat 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computat 9(8):1735–1780CrossRef
11.
Zurück zum Zitat Huang Q, Li Z, Li J, Chang C (2016) Mining frequent trajectory patterns from online footprints. In: IWGS, pp. 71–77. ACM Huang Q, Li Z, Li J, Chang C (2016) Mining frequent trajectory patterns from online footprints. In: IWGS, pp. 71–77. ACM
13.
Zurück zum Zitat Li G, Chen Q, Zheng B, Yin H, Nguyen QVH, Zhou X (2020) Group-based recurrent neural networks for poi recommendation. ACM/IMS Trans. Data Sci. 1(1) Li G, Chen Q, Zheng B, Yin H, Nguyen QVH, Zhou X (2020) Group-based recurrent neural networks for poi recommendation. ACM/IMS Trans. Data Sci. 1(1)
14.
Zurück zum Zitat Li X, Jiang M, Hong H, Liao L (2017) A time-aware personalized point-of-interest recommendation via high-order tensor factorization. ACM Trans Inf Syst 35(4):31CrossRef Li X, Jiang M, Hong H, Liao L (2017) A time-aware personalized point-of-interest recommendation via high-order tensor factorization. ACM Trans Inf Syst 35(4):31CrossRef
15.
Zurück zum Zitat Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y (2014) Geomf: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: SIGKDD, pp. 831–840. ACM Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y (2014) Geomf: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: SIGKDD, pp. 831–840. ACM
16.
Zurück zum Zitat Liu Q, Wu S, Wang L, Tan T (2016) Predicting the next location: a recurrent model with spatial and temporal contexts. In: AAAI, pp. 194–200 Liu Q, Wu S, Wang L, Tan T (2016) Predicting the next location: a recurrent model with spatial and temporal contexts. In: AAAI, pp. 194–200
17.
Zurück zum Zitat Liu X, Liu Y, Aberer K, Miao C (2013) Personalized point-of-interest recommendation by mining users’ preference transition. In: CIKM, pp. 733–738. ACM Liu X, Liu Y, Aberer K, Miao C (2013) Personalized point-of-interest recommendation by mining users’ preference transition. In: CIKM, pp. 733–738. ACM
18.
Zurück zum Zitat Liu Y, Wei W, Sun A, Miao C (2014) Exploiting geographical neighborhood characteristics for location recommendation. In: CIKM, pp. 739–748. ACM Liu Y, Wei W, Sun A, Miao C (2014) Exploiting geographical neighborhood characteristics for location recommendation. In: CIKM, pp. 739–748. ACM
19.
Zurück zum Zitat Mathew W, Raposo R, Martins B (2012) Predicting future locations with hidden Markov models. In: UbiComp, pp. 911–918. ACM Mathew W, Raposo R, Martins B (2012) Predicting future locations with hidden Markov models. In: UbiComp, pp. 911–918. ACM
20.
Zurück zum Zitat Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
21.
Zurück zum Zitat Mnih A, Salakhutdinov R (2007) Probabilistic matrix factorization. In: Proceedings of the 21st annual conference on neural information processing systems, pp. 1257–1264. Curran Associates, Inc Mnih A, Salakhutdinov R (2007) Probabilistic matrix factorization. In: Proceedings of the 21st annual conference on neural information processing systems, pp. 1257–1264. Curran Associates, Inc
22.
Zurück zum Zitat Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: SIGKDD, pp. 637–646. ACM Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: SIGKDD, pp. 637–646. ACM
23.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814. Omnipress Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814. Omnipress
25.
Zurück zum Zitat Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: SIGKDD, pp. 701–710. ACM Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: SIGKDD, pp. 701–710. ACM
26.
Zurück zum Zitat Quinlan JR (1987) Simplifying decision trees. Int J Human-comput Stud Int J Man-mach Stud 51(2):221–234CrossRef Quinlan JR (1987) Simplifying decision trees. Int J Human-comput Stud Int J Man-mach Stud 51(2):221–234CrossRef
27.
Zurück zum Zitat Rendle S, Freudenthaler C, Schmidt-Thieme L (2010) Factorizing personalized markov chains for next-basket recommendation. In: WWW, pp. 811–820. ACM Rendle S, Freudenthaler C, Schmidt-Thieme L (2010) Factorizing personalized markov chains for next-basket recommendation. In: WWW, pp. 811–820. ACM
28.
Zurück zum Zitat Rong P, Yunhong Z, Bin C, Nathan Nan L, Rajan M L, Martin S, Qiang Y (2008) One-class collaborative filtering. In: ICDM, pp. 502–511. IEEE Computer Society Rong P, Yunhong Z, Bin C, Nathan Nan L, Rajan M L, Martin S, Qiang Y (2008) One-class collaborative filtering. In: ICDM, pp. 502–511. IEEE Computer Society
29.
Zurück zum Zitat Sabarish B, Karthi R, Gireeshkumar T (2015) A survey of location prediction using trajectory mining. In: Artificial intelligence and evolutionary algorithms in engineering systems, vol. 324, pp. 119–127. Springer India, New Delhi Sabarish B, Karthi R, Gireeshkumar T (2015) A survey of location prediction using trajectory mining. In: Artificial intelligence and evolutionary algorithms in engineering systems, vol. 324, pp. 119–127. Springer India, New Delhi
30.
Zurück zum Zitat Song C, Qu Z, Blumm N, Barabasi A (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021MathSciNetCrossRef Song C, Qu Z, Blumm N, Barabasi A (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021MathSciNetCrossRef
33.
Zurück zum Zitat Yang J, Xu J, Xu M, Zheng N, Chen Y (2014) Predicting next location using a variable order Markov model. In: IWGS, pp. 37–42. ACM Yang J, Xu J, Xu M, Zheng N, Chen Y (2014) Predicting next location using a variable order Markov model. In: IWGS, pp. 37–42. ACM
34.
Zurück zum Zitat Yao D, Zhang C, Huang J, Bi J (2017) Serm: A recurrent model for next location prediction in semantic trajectories. In: CIKM, pp. 2411–2414. ACM Yao D, Zhang C, Huang J, Bi J (2017) Serm: A recurrent model for next location prediction in semantic trajectories. In: CIKM, pp. 2411–2414. ACM
35.
Zurück zum Zitat Yi B, Shen X, Liu H, Zhang Z, Zhang W, Liu S, Xiong N (2019) Deep matrix factorization with implicit feedback embedding for recommendation system. IEEE Transact Ind Informat 15(8):4591–4601CrossRef Yi B, Shen X, Liu H, Zhang Z, Zhang W, Liu S, Xiong N (2019) Deep matrix factorization with implicit feedback embedding for recommendation system. IEEE Transact Ind Informat 15(8):4591–4601CrossRef
36.
Zurück zum Zitat Zhang C, Han J, Shou L, Lu J, La Porta T (2014) Splitter: mining fine-grained sequential patterns in semantic trajectories. Proceedings of the VLDB Endowment 7(9):769–780CrossRef Zhang C, Han J, Shou L, Lu J, La Porta T (2014) Splitter: mining fine-grained sequential patterns in semantic trajectories. Proceedings of the VLDB Endowment 7(9):769–780CrossRef
37.
Zurück zum Zitat Zhang C, Zhang K, Yuan Q, Zhang L, Hanratty T, Han J (2016) Gmove: group-level mobility modeling using geo-tagged social media. In: SIGKDD, pp. 1305–1314. ACM Zhang C, Zhang K, Yuan Q, Zhang L, Hanratty T, Han J (2016) Gmove: group-level mobility modeling using geo-tagged social media. In: SIGKDD, pp. 1305–1314. ACM
38.
Zurück zum Zitat Zheng VW, Cao B, Zheng Y, Xie X, Yang Q (2010) Collaborative filtering meets mobile recommendation: a user-centered approach. In: AAAI, pp. 236–241. AAAI Zheng VW, Cao B, Zheng Y, Xie X, Yang Q (2010) Collaborative filtering meets mobile recommendation: a user-centered approach. In: AAAI, pp. 236–241. AAAI
Metadaten
Titel
Group-based recurrent neural network for human mobility prediction
verfasst von
Shengren Ke
Meiyi Xie
Hong Zhu
Zhongsheng Cao
Publikationsdatum
12.04.2022
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 12/2022
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-06971-6

Weitere Artikel der Ausgabe 12/2022

Neural Computing and Applications 12/2022 Zur Ausgabe

Premium Partner