Skip to main content
Erschienen in: Telecommunication Systems 4/2019

02.01.2019

Group layer MU-MIMO for 5G wireless systems

verfasst von: Walid A. Al-Hussaibi, Falah H. Ali

Erschienen in: Telecommunication Systems | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multiple-input multiple-output (MIMO) and nonorthogonal multiple access technologies are considered as fundamental components to meet the high spectral efficiency requirements of the forthcoming 5G wireless systems and beyond. In this context, group layer multiuser MIMO (GL-MU-MIMO) scheme has been proposed by the authors with linear group multiuser detection and receive antenna selection (RAS) to increase the number of simultaneously and reliably connected users more than the utilized number of radio frequency chains at the base station. In this paper, we derive the sum rate and capacity region expressions for GL-MU-MIMO uplink Rayleigh fading channels to demonstrate the impact of power allocation on the system performance and user-fairness. In addition, two low complexity RAS algorithms are proposed to maximize the sum rate of designed users’ groups and overall channel capacity. These techniques are utilized for new dynamic user grouping, RAS, and power allocation strategy to optimize the system performance under total received power and minimum user rate constrains. Compared with the generic MU-MIMO, numerical simulations demonstrate valuable tradeoffs between user overloading, complexity, and achieved performance through efficient utilization of groups’ power allocation. The new outcomes of GL-MU-MIMO extends the state-of-the-art towards diverse multi-antenna applications for future communications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ji, H., Kim, Y., Lee, J., Onggosanusi, E., Nam, Y., Zhang, J., et al. (2017). Overview of full-dimension MIMO in LTE-Advanced Pro. IEEE Communications Magazine, 55(2), 176–184.CrossRef Ji, H., Kim, Y., Lee, J., Onggosanusi, E., Nam, Y., Zhang, J., et al. (2017). Overview of full-dimension MIMO in LTE-Advanced Pro. IEEE Communications Magazine, 55(2), 176–184.CrossRef
2.
Zurück zum Zitat Lien, S.-Y., Shieh, S.-L., Huang, Y., Su, B., Hsu, Y.-L., & Wei, H.-Y. (2017). 5G new radio: Waveform, frame structure, multiple access, and initial access. IEEE Communications Magazine, 55(6), 64–71.CrossRef Lien, S.-Y., Shieh, S.-L., Huang, Y., Su, B., Hsu, Y.-L., & Wei, H.-Y. (2017). 5G new radio: Waveform, frame structure, multiple access, and initial access. IEEE Communications Magazine, 55(6), 64–71.CrossRef
3.
Zurück zum Zitat Al-Hussaibi, W., & Ali, F. (2018). A closed-form approximation of correlated multiuser MIMO ergodic capacity with antenna selection and imperfect channel estimation. IEEE Transactions on Vehicular Technology, 67(6), 5515–5519.CrossRef Al-Hussaibi, W., & Ali, F. (2018). A closed-form approximation of correlated multiuser MIMO ergodic capacity with antenna selection and imperfect channel estimation. IEEE Transactions on Vehicular Technology, 67(6), 5515–5519.CrossRef
4.
Zurück zum Zitat Pätzold, M. (2018). Countdown to the full-scale development of 5G new radio. IEEE Vehicular Technology Magazine, 13(2), 7–13.CrossRef Pätzold, M. (2018). Countdown to the full-scale development of 5G new radio. IEEE Vehicular Technology Magazine, 13(2), 7–13.CrossRef
5.
Zurück zum Zitat Al-Hussaibi, W., & Ali, F. (2018). Extending the user capacity of MU-MIMO with low detection complexity and receive diversity. Wireless Networks, 24(6), 2237–2249.CrossRef Al-Hussaibi, W., & Ali, F. (2018). Extending the user capacity of MU-MIMO with low detection complexity and receive diversity. Wireless Networks, 24(6), 2237–2249.CrossRef
6.
Zurück zum Zitat Bjornson, E., Larsson, E., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated. IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef Bjornson, E., Larsson, E., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated. IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef
7.
Zurück zum Zitat Miao, G. (2013). Energy-efficient uplink multi-user MIMO. IEEE Transactions on Wireless Communications, 12(5), 2302–2313.CrossRef Miao, G. (2013). Energy-efficient uplink multi-user MIMO. IEEE Transactions on Wireless Communications, 12(5), 2302–2313.CrossRef
8.
Zurück zum Zitat Al-Hussaibi, W., & Ali, F. (2016). Constellation constrained MU-MIMO system for higher sum rate capacity and error performance over correlated channels. Wireless Communications and Mobile Computing, 16(6), 717–732.CrossRef Al-Hussaibi, W., & Ali, F. (2016). Constellation constrained MU-MIMO system for higher sum rate capacity and error performance over correlated channels. Wireless Communications and Mobile Computing, 16(6), 717–732.CrossRef
9.
Zurück zum Zitat Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys & Tutorials, 20(3), 2294–2323.CrossRef Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys & Tutorials, 20(3), 2294–2323.CrossRef
10.
Zurück zum Zitat Lei, L., Yuan, D., & Varbrand, P. (2016). On power minimization for non-orthogonal multiple access (NOMA). IEEE Communications Letters, 20(12), 2458–2461.CrossRef Lei, L., Yuan, D., & Varbrand, P. (2016). On power minimization for non-orthogonal multiple access (NOMA). IEEE Communications Letters, 20(12), 2458–2461.CrossRef
11.
Zurück zum Zitat Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., et al. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.CrossRef Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., et al. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.CrossRef
12.
Zurück zum Zitat Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, 14(7), 3899–3911.CrossRef Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, 14(7), 3899–3911.CrossRef
13.
Zurück zum Zitat Mehta, N. B., Kashyap, S., & Molisch, A. F. (2012). Antenna selection in LTE: From motivation to specification. IEEE Communications Magazine, 50(10), 144–150.CrossRef Mehta, N. B., Kashyap, S., & Molisch, A. F. (2012). Antenna selection in LTE: From motivation to specification. IEEE Communications Magazine, 50(10), 144–150.CrossRef
14.
Zurück zum Zitat Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 52(2), 66–73.CrossRef Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 52(2), 66–73.CrossRef
15.
Zurück zum Zitat Zhang, P., Chen, S., & Hanzo, L. (2015). Two-tier channel estimation aided near-capacity MIMO transceivers relying on norm-based joint transmit and receive antenna selection. IEEE Transactions on Wireless Communications, 14(1), 122–137.CrossRef Zhang, P., Chen, S., & Hanzo, L. (2015). Two-tier channel estimation aided near-capacity MIMO transceivers relying on norm-based joint transmit and receive antenna selection. IEEE Transactions on Wireless Communications, 14(1), 122–137.CrossRef
16.
Zurück zum Zitat Al-Hussaibi, W., & Ali, F. (2013). Fast receive antenna selection for spatial multiplexing MIMO over correlated Rayleigh fading channels. Wireless Personal Communications, 70(4), 1243–1259.CrossRef Al-Hussaibi, W., & Ali, F. (2013). Fast receive antenna selection for spatial multiplexing MIMO over correlated Rayleigh fading channels. Wireless Personal Communications, 70(4), 1243–1259.CrossRef
17.
Zurück zum Zitat Xu, Z., Sfar, S., & Blum, R. (2009). Analysis of MIMO systems with receive antenna selection in spatially correlated Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 58(1), 251–262.CrossRef Xu, Z., Sfar, S., & Blum, R. (2009). Analysis of MIMO systems with receive antenna selection in spatially correlated Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 58(1), 251–262.CrossRef
18.
Zurück zum Zitat Zhang, Y., Ji, C., Malik, W., O’Brien, D., & Edwards, D. (2009). Receive antenna selection for MIMO systems over correlated fading channels. IEEE Transactions on Wireless Communications, 8(9), 4393–4399.CrossRef Zhang, Y., Ji, C., Malik, W., O’Brien, D., & Edwards, D. (2009). Receive antenna selection for MIMO systems over correlated fading channels. IEEE Transactions on Wireless Communications, 8(9), 4393–4399.CrossRef
19.
Zurück zum Zitat Lim, B., Krzymien, W., & Schlegel, C. (2009). Efficient sum rate maximization and resource allocation in block-diagonalized space-division multiplexing. IEEE Transactions on Vehicular Technology, 58(1), 478–484.CrossRef Lim, B., Krzymien, W., & Schlegel, C. (2009). Efficient sum rate maximization and resource allocation in block-diagonalized space-division multiplexing. IEEE Transactions on Vehicular Technology, 58(1), 478–484.CrossRef
20.
Zurück zum Zitat Dai, L., Sfar, S., & Letaief, K. (2006). Optimal antenna selection based on capacity maximization for MIMO systems in correlated channels. IEEE Transactions on Communications, 54(3), 563–573.CrossRef Dai, L., Sfar, S., & Letaief, K. (2006). Optimal antenna selection based on capacity maximization for MIMO systems in correlated channels. IEEE Transactions on Communications, 54(3), 563–573.CrossRef
21.
Zurück zum Zitat Al-Hussaibi, W., & Ali, F. (2011). Receive antenna selection for uplink multiuser MIMO systems over correlated Rayleigh fading channels. In Proceedings of 14th WPMC’11, Brest, France, October 3–7, 2011. Al-Hussaibi, W., & Ali, F. (2011). Receive antenna selection for uplink multiuser MIMO systems over correlated Rayleigh fading channels. In Proceedings of 14th WPMC’11, Brest, France, October 3–7, 2011.
22.
Zurück zum Zitat Gao, X., Edfors, O., Tufvesson, F., & Larsson, E. (2015). Massive MIMO in real propagation environments: Do all antennas contribute equally? IEEE Transactions on Communications, 63(11), 3917–3928.CrossRef Gao, X., Edfors, O., Tufvesson, F., & Larsson, E. (2015). Massive MIMO in real propagation environments: Do all antennas contribute equally? IEEE Transactions on Communications, 63(11), 3917–3928.CrossRef
23.
Zurück zum Zitat Gao, X., Edfors, O., Tufvesson, F., & Larsson, E. (2015). Multi-switch for antenna selection in massive MIMO. In Proceedings of IEEE GLOBCOM conference, San Diego, USA, December 2015. Gao, X., Edfors, O., Tufvesson, F., & Larsson, E. (2015). Multi-switch for antenna selection in massive MIMO. In Proceedings of IEEE GLOBCOM conference, San Diego, USA, December 2015.
24.
Zurück zum Zitat Amadori, P., & Masouros, C. (2016). Interference-driven antenna selection for massive multiuser MIMO. IEEE Transactions on Vehicular Technology, 65(8), 5944–5958.CrossRef Amadori, P., & Masouros, C. (2016). Interference-driven antenna selection for massive multiuser MIMO. IEEE Transactions on Vehicular Technology, 65(8), 5944–5958.CrossRef
25.
Zurück zum Zitat Mi, D., Dianati, M., Muhaidat, S., & Chen, Y. (2015). A novel antenna selection scheme for spatially correlated massive MIMO uplinks with imperfect channel estimation. In Proceedings of 81st IEEE VTC Spring, Glasgow, May 2015. Mi, D., Dianati, M., Muhaidat, S., & Chen, Y. (2015). A novel antenna selection scheme for spatially correlated massive MIMO uplinks with imperfect channel estimation. In Proceedings of 81st IEEE VTC Spring, Glasgow, May 2015.
26.
Zurück zum Zitat Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2016). A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Transactions on Wireless Communications, 15(11), 7244–7257.CrossRef Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2016). A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Transactions on Wireless Communications, 15(11), 7244–7257.CrossRef
27.
Zurück zum Zitat Ding, Z., Adachi, F., & Poor, H. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.CrossRef Ding, Z., Adachi, F., & Poor, H. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.CrossRef
28.
Zurück zum Zitat Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRef Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRef
29.
Zurück zum Zitat Clarke, P., & de Lamare, R. (2012). Transmit diversity and relay selection algorithms for multirelay cooperative MIMO systems. IEEE Transactions on Vehicular Technology, 61(3), 1084–1098.CrossRef Clarke, P., & de Lamare, R. (2012). Transmit diversity and relay selection algorithms for multirelay cooperative MIMO systems. IEEE Transactions on Vehicular Technology, 61(3), 1084–1098.CrossRef
30.
Zurück zum Zitat Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRef Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.CrossRef
31.
Zurück zum Zitat Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129.CrossRef Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129.CrossRef
32.
Zurück zum Zitat Sun, Q., Han, S., Chih-Lin, I., & Pan, Z. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters, 4(4), 405–408.CrossRef Sun, Q., Han, S., Chih-Lin, I., & Pan, Z. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters, 4(4), 405–408.CrossRef
33.
Zurück zum Zitat Choi, J. (2016). On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Transactions on Wireless Communications, 15(5), 3226–3237.CrossRef Choi, J. (2016). On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Transactions on Wireless Communications, 15(5), 3226–3237.CrossRef
34.
Zurück zum Zitat Ali, M. S., Hossain, E., & Kim, D. (2017). Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation. IEEE Access, 5, 565–577.CrossRef Ali, M. S., Hossain, E., & Kim, D. (2017). Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation. IEEE Access, 5, 565–577.CrossRef
35.
Zurück zum Zitat Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. (2016). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters, 20(7), 1465–1468. Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. (2016). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters, 20(7), 1465–1468.
36.
Zurück zum Zitat Soysal, A., & Ulukus, S. (2010). Joint channel estimation and resource allocation for MIMO systems—Part II: Multi-user and numerical analysis. IEEE Transactions on Wireless Communications, 9(2), 632–640.CrossRef Soysal, A., & Ulukus, S. (2010). Joint channel estimation and resource allocation for MIMO systems—Part II: Multi-user and numerical analysis. IEEE Transactions on Wireless Communications, 9(2), 632–640.CrossRef
37.
Zurück zum Zitat Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.CrossRef Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.CrossRef
38.
Zurück zum Zitat Goldsmith, A., Jafar, S. A., Jindal, N., & Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21(5), 684–702.CrossRef Goldsmith, A., Jafar, S. A., Jindal, N., & Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21(5), 684–702.CrossRef
39.
Zurück zum Zitat Al-Hussaibi, W., & Ali, F. (2012). Generation of correlated Rayleigh fading channels for accurate simulation of promising wireless communication systems. Simulation Modelling Practice and Theory, 25(4), 56–72.CrossRef Al-Hussaibi, W., & Ali, F. (2012). Generation of correlated Rayleigh fading channels for accurate simulation of promising wireless communication systems. Simulation Modelling Practice and Theory, 25(4), 56–72.CrossRef
40.
Zurück zum Zitat Ding, Z., Dai, L., & Poor, V. H. (2016). MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access, 4, 1393–1405.CrossRef Ding, Z., Dai, L., & Poor, V. H. (2016). MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access, 4, 1393–1405.CrossRef
Metadaten
Titel
Group layer MU-MIMO for 5G wireless systems
verfasst von
Walid A. Al-Hussaibi
Falah H. Ali
Publikationsdatum
02.01.2019
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 4/2019
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-018-00536-6

Weitere Artikel der Ausgabe 4/2019

Telecommunication Systems 4/2019 Zur Ausgabe

Neuer Inhalt