Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2019

23.11.2018

Growth behavior of IMCs layer of the Sn–35Bi–1Ag on Cu, Ni–P/Cu and Ni–Co–P/Cu substrates during aging

verfasst von: Yulong Li, Zhiliang Wang, Xuewen Li, Xiaowu Hu, Min Lei

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the interfacial reactions and IMC growth of the Sn–35Bi–1Ag on Cu, Ni–P/Cu and Ni–Co–P/Cu were studied during reflowing at 220 °C for 10 min and solid–state treatment at 150 °C with various aging times. For the solder joints of Sn–35Bi–1Ag/Cu, Cu6Sn5 IMC was formed at the interfacial layer after soldering, while Cu3Sn appeared after aging treatment. In the case of the electroless Ni–P plating of Cu, the IMC formed at the interface during isothermal aging was mainly Ni3Sn4 and a small amount of P-rich Ni (Ni3P) layer between the Ni3Sn4 IMC and the electroless Ni–P plating layer. In the case of the electroless Ni–Co–P plating of Cu, the IMC formed at the interface during isothermal aging was mainly (Ni, Co)3Sn4 and a small amount of P-rich Ni ((Ni, Co)3P) layer between (Ni, Co)3Sn4 IMC and the electroless Ni–Co–P plating layer. The addition of Co atoms could effectively inhibit the IMC growth rate, which inducing a lower growth rate of (Ni, Co)3Sn4 than that of Ni3Sn4. The thickness of Ni3P and (Ni, Co)3P layer reached about 2.31 µm and 1.25 µm after aging for 360 h, respectively. Also, the growth kinetics of the Ni3P and (Ni, Co)3P layer was found to be a diffusion–controlled process, which followed a parabolic relationship in the thickness increase. During the aging, the consumption of the electroless Ni–Co–P plating layer was greatly reduced compared with that of the electroless Ni–P plating layer. Moreover, there were no voids observed in the electroless Ni–Co–P plating layer while some defects formed in that of the electroless Ni–P plating layer. The electroless Ni–Co–P plating layer will be a good diffusion barrier for the lead-free soldering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.L. Yang, J.Y. Wu, C.C. Li, S. Yang, C.R. Kao, Low temperature bonding for high temperature applications by using SnBi solders. J. Alloys Compd. 647, 681–685 (2015)CrossRef T.L. Yang, J.Y. Wu, C.C. Li, S. Yang, C.R. Kao, Low temperature bonding for high temperature applications by using SnBi solders. J. Alloys Compd. 647, 681–685 (2015)CrossRef
2.
Zurück zum Zitat Y.W. Wang, Y.W. Lin, C.R. Kao, Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates. Microelectron. Reliab. 49(3), 248–252 (2009)CrossRef Y.W. Wang, Y.W. Lin, C.R. Kao, Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates. Microelectron. Reliab. 49(3), 248–252 (2009)CrossRef
3.
Zurück zum Zitat C.K. Chung, Y.J. Chen, C.C. Li, C.R. Kao, The critical oxide thickness for Pb-free reflow soldering on Cu substrate. Thin Solid Films 520(16), 5346–5352 (2012)CrossRef C.K. Chung, Y.J. Chen, C.C. Li, C.R. Kao, The critical oxide thickness for Pb-free reflow soldering on Cu substrate. Thin Solid Films 520(16), 5346–5352 (2012)CrossRef
4.
Zurück zum Zitat M.Y. Tsai, S.C. Yang, Y.W. Wang, C.R. Kao, Grain growth sequence of Cu3Sn in the Cu/Sn and Cu/Sn–Zn systems. J. Alloys Compd. 494(1–2), 123–127 (2010)CrossRef M.Y. Tsai, S.C. Yang, Y.W. Wang, C.R. Kao, Grain growth sequence of Cu3Sn in the Cu/Sn and Cu/Sn–Zn systems. J. Alloys Compd. 494(1–2), 123–127 (2010)CrossRef
5.
Zurück zum Zitat M.F.M. Nazeri, A.A. Mohamad, Effect of corrosion in alkaline solution to the microstructure and mechanical properties of Cu/Sn–9Zn/Cu. Proc. Chem. 19, 247–252 (2016)CrossRef M.F.M. Nazeri, A.A. Mohamad, Effect of corrosion in alkaline solution to the microstructure and mechanical properties of Cu/Sn–9Zn/Cu. Proc. Chem. 19, 247–252 (2016)CrossRef
6.
Zurück zum Zitat J.C. Liu, G. Zhang, Z.H. Wang, J.S. Ma, K. Suganuma, Thermal property, wettability and interfacial characterization of novel Sn–Zn–Bi–In alloys as low-temperature lead-free solders. Mater. Des. 84, 331–339 (2015)CrossRef J.C. Liu, G. Zhang, Z.H. Wang, J.S. Ma, K. Suganuma, Thermal property, wettability and interfacial characterization of novel Sn–Zn–Bi–In alloys as low-temperature lead-free solders. Mater. Des. 84, 331–339 (2015)CrossRef
7.
Zurück zum Zitat J. Shen, C. Wu, S. Li, Effects of rare earth additions on the microstructural evolution and microhardness of Sn30Bi0. 5Cu and Sn35Bi1Ag solder alloys. J. Mater. Sci.: Mater. Electron. 23(1), 156–163 (2012) J. Shen, C. Wu, S. Li, Effects of rare earth additions on the microstructural evolution and microhardness of Sn30Bi0. 5Cu and Sn35Bi1Ag solder alloys. J. Mater. Sci.: Mater. Electron. 23(1), 156–163 (2012)
8.
Zurück zum Zitat L. Zhang, L. Sun, Y.H. Guo, Microstructures and properties of Sn58Bi, Sn35Bi0. 3Ag, Sn35Bi1. 0Ag solder and solder joints. J. Mater. Sci.: Mater. Electron. 26(10), 7629–7634 (2015) L. Zhang, L. Sun, Y.H. Guo, Microstructures and properties of Sn58Bi, Sn35Bi0. 3Ag, Sn35Bi1. 0Ag solder and solder joints. J. Mater. Sci.: Mater. Electron. 26(10), 7629–7634 (2015)
9.
Zurück zum Zitat S. Amore, E. Ricci, G. Borzone, R. Novakovic, Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates. Mater. Sci. Eng. A 495(1–2), 108–112 (2008)CrossRef S. Amore, E. Ricci, G. Borzone, R. Novakovic, Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates. Mater. Sci. Eng. A 495(1–2), 108–112 (2008)CrossRef
10.
Zurück zum Zitat S.W. Kim, J.W. Yoon, S.B. Jung, Interfacial reactions and shear strengths between Sn–Ag-based Pb-free solder balls and Au/EN/Cu metallization. J. Electron. Mater. 33(10), 1182–1189 (2004)CrossRef S.W. Kim, J.W. Yoon, S.B. Jung, Interfacial reactions and shear strengths between Sn–Ag-based Pb-free solder balls and Au/EN/Cu metallization. J. Electron. Mater. 33(10), 1182–1189 (2004)CrossRef
11.
Zurück zum Zitat C.F. Tseng, C.J. Lee, J.G. Duh, Roles of Cu in Pb-free solders jointed with electroless Ni (P) plating. Mater. Sci. Eng. A 574, 60–67 (2013)CrossRef C.F. Tseng, C.J. Lee, J.G. Duh, Roles of Cu in Pb-free solders jointed with electroless Ni (P) plating. Mater. Sci. Eng. A 574, 60–67 (2013)CrossRef
12.
Zurück zum Zitat J.W. Yoon, S.B. Jung, Growth kinetics of Ni3Sn4 and Ni3P layer between Sn-3.5 Ag solder and electroless Ni–P substrate. J. Alloys Compd. 376(1–2), 105–110 (2004)CrossRef J.W. Yoon, S.B. Jung, Growth kinetics of Ni3Sn4 and Ni3P layer between Sn-3.5 Ag solder and electroless Ni–P substrate. J. Alloys Compd. 376(1–2), 105–110 (2004)CrossRef
13.
Zurück zum Zitat C.Y. Ho, J.G. Duh, C.W. Lin, C.J. Lin, Y.H. Wu, H.C. Hong, T.H. Wang, Microstructural variation and high-speed impact responses of Sn–3.0 Ag–0.5 Cu/ENEPIG solder joints with ultra-thin Ni–P deposit. J. Mater. Sci. 48(6), 2724–2732 (2013)CrossRef C.Y. Ho, J.G. Duh, C.W. Lin, C.J. Lin, Y.H. Wu, H.C. Hong, T.H. Wang, Microstructural variation and high-speed impact responses of Sn–3.0 Ag–0.5 Cu/ENEPIG solder joints with ultra-thin Ni–P deposit. J. Mater. Sci. 48(6), 2724–2732 (2013)CrossRef
14.
Zurück zum Zitat C.E. Ho, C.W. Fan, W.H. Wu, T.T. Kuo, Reliability evaluation on a submicron Ni (P) thin film for lead-free soldering. Thin Solid Films 529, 364–368 (2013)CrossRef C.E. Ho, C.W. Fan, W.H. Wu, T.T. Kuo, Reliability evaluation on a submicron Ni (P) thin film for lead-free soldering. Thin Solid Films 529, 364–368 (2013)CrossRef
15.
Zurück zum Zitat Y.J. Hu, Y.C. Hsu, C.T. Lu, T.S. Huang, C.Y. Chen, W.N. Chuang, C.Y. Liu, Interfacial reactions between columnar or layered Ni (P) layers and Sn–Ag–Cu solder. J. Electron. Mater. 43(1), 277–283 (2014)CrossRef Y.J. Hu, Y.C. Hsu, C.T. Lu, T.S. Huang, C.Y. Chen, W.N. Chuang, C.Y. Liu, Interfacial reactions between columnar or layered Ni (P) layers and Sn–Ag–Cu solder. J. Electron. Mater. 43(1), 277–283 (2014)CrossRef
16.
Zurück zum Zitat M.O. Alam, Y.C. Chan, K.C. Hung, Reliability study of the electroless Ni–P layer against solder alloy. Microelectron. Reliab. 42(7), 1065–1073 (2002)CrossRef M.O. Alam, Y.C. Chan, K.C. Hung, Reliability study of the electroless Ni–P layer against solder alloy. Microelectron. Reliab. 42(7), 1065–1073 (2002)CrossRef
17.
Zurück zum Zitat M.O. Alam, Y.C. Chan, K.C. Hung, Interfacial reaction of Pb–Sn solder and Sn–Ag solder with electroless Ni deposit during reflow. J. Electron. Mater. 31(10), 1117–1121 (2002)CrossRef M.O. Alam, Y.C. Chan, K.C. Hung, Interfacial reaction of Pb–Sn solder and Sn–Ag solder with electroless Ni deposit during reflow. J. Electron. Mater. 31(10), 1117–1121 (2002)CrossRef
18.
Zurück zum Zitat K. Zeng, K.N. Tu, Six cases of reliability study of Pb–free solder joints in electronic packaging technology. Mater. Sci. Eng. R 38(2), 55–105 (2002)CrossRef K. Zeng, K.N. Tu, Six cases of reliability study of Pb–free solder joints in electronic packaging technology. Mater. Sci. Eng. R 38(2), 55–105 (2002)CrossRef
19.
Zurück zum Zitat J.W. Yoon, C.B. Lee, S.B. Jung, Growth of an intermetallic compound layer with Sn–3.5 Ag–5Bi on Cu and Ni–P/Cu during aging treatment. J. Electron. Mater. 32(11), 1195–1202 (2003)CrossRef J.W. Yoon, C.B. Lee, S.B. Jung, Growth of an intermetallic compound layer with Sn–3.5 Ag–5Bi on Cu and Ni–P/Cu during aging treatment. J. Electron. Mater. 32(11), 1195–1202 (2003)CrossRef
20.
Zurück zum Zitat J.W. Jang, D.R. Frear, T.Y. Lee, K.N. Tu, Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization. J. Appl. Phys. 88(11), 6359–6363 (2000)CrossRef J.W. Jang, D.R. Frear, T.Y. Lee, K.N. Tu, Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization. J. Appl. Phys. 88(11), 6359–6363 (2000)CrossRef
21.
Zurück zum Zitat T.S. Narayanan, S. Selvakumar, A. Stephen, Electroless Ni–Co–P ternary alloy deposits: preparation and characteristics. Surf Coat Technol. 172(2–3), 298–307 (2003)CrossRef T.S. Narayanan, S. Selvakumar, A. Stephen, Electroless Ni–Co–P ternary alloy deposits: preparation and characteristics. Surf Coat Technol. 172(2–3), 298–307 (2003)CrossRef
22.
Zurück zum Zitat Y. Liu, Q. Zhao, Study of electroless Ni–Cu–P coatings and their anti-corrosion properties. Appl. Surf. Sci. 228(1–4), 57–62 (2004)CrossRef Y. Liu, Q. Zhao, Study of electroless Ni–Cu–P coatings and their anti-corrosion properties. Appl. Surf. Sci. 228(1–4), 57–62 (2004)CrossRef
23.
Zurück zum Zitat Z. Bangwei, H. Wangyu, Z. Qinglong, Q. Xuanyuan, Properties of electroless Ni–WP amorphous alloys. Mater. Charact. 37(2–3), 119–122 (1996)CrossRef Z. Bangwei, H. Wangyu, Z. Qinglong, Q. Xuanyuan, Properties of electroless Ni–WP amorphous alloys. Mater. Charact. 37(2–3), 119–122 (1996)CrossRef
24.
Zurück zum Zitat R.L. Melo, P.N. Casciano, A.N. Correia, P.D. Lima-Neto, Characterisation of electrodeposited and heat-treated Ni–Mo–P coatings. J. Braz. Chem. Soc. 23(2), 328–334 (2012)CrossRef R.L. Melo, P.N. Casciano, A.N. Correia, P.D. Lima-Neto, Characterisation of electrodeposited and heat-treated Ni–Mo–P coatings. J. Braz. Chem. Soc. 23(2), 328–334 (2012)CrossRef
25.
Zurück zum Zitat A. Kumar, A. Singh, M. Kumar, D. Kumar, S. Barthwal, Study on thermal stability of electroless deposited Ni–Co–P alloy thin film. J. Mater. Sci.: Mater. Electron. 22(9), 1495 (2011) A. Kumar, A. Singh, M. Kumar, D. Kumar, S. Barthwal, Study on thermal stability of electroless deposited Ni–Co–P alloy thin film. J. Mater. Sci.: Mater. Electron. 22(9), 1495 (2011)
26.
Zurück zum Zitat M.M. Younan, I.H.M. Aly, M.T. Nageeb, Effect of heat treatment on electroless ternary nickel–cobalt–phosphorus alloy. J. Appl. Electrochem. 32(4), 439–446 (2002)CrossRef M.M. Younan, I.H.M. Aly, M.T. Nageeb, Effect of heat treatment on electroless ternary nickel–cobalt–phosphorus alloy. J. Appl. Electrochem. 32(4), 439–446 (2002)CrossRef
27.
Zurück zum Zitat Y. Yang, J.N. Balaraju, Y. Huang, H. Liu, Z. Chen, Interface reaction between an electroless Ni–Co–P metallization and Sn–3.5 Ag lead-free solder with improved joint reliability. Acta Mater. 71, 69–79 (2014)CrossRef Y. Yang, J.N. Balaraju, Y. Huang, H. Liu, Z. Chen, Interface reaction between an electroless Ni–Co–P metallization and Sn–3.5 Ag lead-free solder with improved joint reliability. Acta Mater. 71, 69–79 (2014)CrossRef
28.
Zurück zum Zitat A. Kumar, M. Kumar, D. Kumar, Effect of composition on electroless deposited Ni–Co–P alloy thin films as a diffusion barrier for copper metallization. Appl. Surf. Sci. 258(20), 7962–7967 (2012)CrossRef A. Kumar, M. Kumar, D. Kumar, Effect of composition on electroless deposited Ni–Co–P alloy thin films as a diffusion barrier for copper metallization. Appl. Surf. Sci. 258(20), 7962–7967 (2012)CrossRef
29.
Zurück zum Zitat A. Kumar, M. Kumar, D. Kumar, Deposition and characterization of electroless Ni–Co–P alloy for diffusion barrier applications. Microelectron. Eng. 87(3), 387–390 (2010)CrossRef A. Kumar, M. Kumar, D. Kumar, Deposition and characterization of electroless Ni–Co–P alloy for diffusion barrier applications. Microelectron. Eng. 87(3), 387–390 (2010)CrossRef
30.
Zurück zum Zitat H.F. Zou, Q.K. Zhang, Z.F. Zhang, Interfacial microstructure and mechanical properties of SnBi/Cu joints by alloying Cu substrate. Mater. Sci. Eng. A 532, 167–177 (2012)CrossRef H.F. Zou, Q.K. Zhang, Z.F. Zhang, Interfacial microstructure and mechanical properties of SnBi/Cu joints by alloying Cu substrate. Mater. Sci. Eng. A 532, 167–177 (2012)CrossRef
31.
Zurück zum Zitat X. Hu, Y. Li, K. Li, Z. Min, Effect of Bi segregation on the asymmetrical growth of Cu–Sn intermetallic compounds in Cu/Sn–58Bi/Cu sandwich solder joints during isothermal aging. J. Electron. Mater. 42(12), 3567–3572 (2013)CrossRef X. Hu, Y. Li, K. Li, Z. Min, Effect of Bi segregation on the asymmetrical growth of Cu–Sn intermetallic compounds in Cu/Sn–58Bi/Cu sandwich solder joints during isothermal aging. J. Electron. Mater. 42(12), 3567–3572 (2013)CrossRef
32.
Zurück zum Zitat P.J. Shang, Z.Q. Liu, D.X. Li, J.K. Shang, Bi–induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints. Scr. Mater. 58(5), 409–412 (2008)CrossRef P.J. Shang, Z.Q. Liu, D.X. Li, J.K. Shang, Bi–induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints. Scr. Mater. 58(5), 409–412 (2008)CrossRef
33.
Zurück zum Zitat P.L. Liu, J.K. Shang, Segregant–induced cavitation of Sn/Cu reactive interface. Scr. Mater. 53(6), 631–634 (2005)CrossRef P.L. Liu, J.K. Shang, Segregant–induced cavitation of Sn/Cu reactive interface. Scr. Mater. 53(6), 631–634 (2005)CrossRef
34.
Zurück zum Zitat J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, P. Thompson, Solder reaction-assisted crystallization of electroless Ni–P under bump metallization in low cost flip chip technology. J. Appl. Phys. 85(12), 8456–8463 (1999)CrossRef J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, P. Thompson, Solder reaction-assisted crystallization of electroless Ni–P under bump metallization in low cost flip chip technology. J. Appl. Phys. 85(12), 8456–8463 (1999)CrossRef
35.
Zurück zum Zitat J.W. Yoon, B.I. Noh, J.H. Yoon, H.B. Kang, S.B. Jung, Sequential interfacial intermetallic compound formation of Cu6Sn5 and Ni3Sn4 between Sn–Ag–Cu solder and ENEPIG substrate during a reflow process. J. Alloys Compd. 509(9), L153–L156 (2011)CrossRef J.W. Yoon, B.I. Noh, J.H. Yoon, H.B. Kang, S.B. Jung, Sequential interfacial intermetallic compound formation of Cu6Sn5 and Ni3Sn4 between Sn–Ag–Cu solder and ENEPIG substrate during a reflow process. J. Alloys Compd. 509(9), L153–L156 (2011)CrossRef
36.
Zurück zum Zitat P.L. Liu, J.K. Shang, Fracture of SnBi/Ni (P) interfaces. J. Mater. Res. 20(4), 818–826 (2005)CrossRef P.L. Liu, J.K. Shang, Fracture of SnBi/Ni (P) interfaces. J. Mater. Res. 20(4), 818–826 (2005)CrossRef
37.
Zurück zum Zitat J.W. Yoon, C.B. Lee, S.B. Jung, Interfacial reactions between Sn–58 mass% Bi eutectic solder and (Cu, electroless Ni–P/Cu) substrate. Mater. Trans. 43(8), 1821–1826 (2002)CrossRef J.W. Yoon, C.B. Lee, S.B. Jung, Interfacial reactions between Sn–58 mass% Bi eutectic solder and (Cu, electroless Ni–P/Cu) substrate. Mater. Trans. 43(8), 1821–1826 (2002)CrossRef
38.
Zurück zum Zitat L. Magagnin, V. Sirtori, S. Seregni et al., Electroless Co–P for diffusion barrier in Pb-free soldering. Electrochim. Acta 50(23), 4621–4625 (2005)CrossRef L. Magagnin, V. Sirtori, S. Seregni et al., Electroless Co–P for diffusion barrier in Pb-free soldering. Electrochim. Acta 50(23), 4621–4625 (2005)CrossRef
39.
Zurück zum Zitat X. Hu, Y. Li, Z. Min, Interfacial reaction and IMC growth between Bi–containing Sn0. 7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 582, 341–347 (2014)CrossRef X. Hu, Y. Li, Z. Min, Interfacial reaction and IMC growth between Bi–containing Sn0. 7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 582, 341–347 (2014)CrossRef
40.
Zurück zum Zitat D.G. Kim, S.B. Jung, Interfacial reactions and growth kinetics for intermetallic compound layer between In-48Sn solder and bare Cu substrate. J. Alloys Compd. 386(1–2), 151–156 (2005)CrossRef D.G. Kim, S.B. Jung, Interfacial reactions and growth kinetics for intermetallic compound layer between In-48Sn solder and bare Cu substrate. J. Alloys Compd. 386(1–2), 151–156 (2005)CrossRef
41.
Zurück zum Zitat C.H. Wang, C.Y. Kuo, Growth kinetics of the solid–state interfacial reactions in the Sn–Cu/Co and Sn/Co–Cu couples. Mater. Chem. Phys. 130(1–2), 651–656 (2011)CrossRef C.H. Wang, C.Y. Kuo, Growth kinetics of the solid–state interfacial reactions in the Sn–Cu/Co and Sn/Co–Cu couples. Mater. Chem. Phys. 130(1–2), 651–656 (2011)CrossRef
42.
Zurück zum Zitat A. Li, X. Hu, X. Jiang, Y. Li, Interfacial reaction and microstructure between the Sn3Ag0. 5Cu solder and Cu–Co dual–phase substrate. Appl. Phys. A 124(7), 484 (2018)CrossRef A. Li, X. Hu, X. Jiang, Y. Li, Interfacial reaction and microstructure between the Sn3Ag0. 5Cu solder and Cu–Co dual–phase substrate. Appl. Phys. A 124(7), 484 (2018)CrossRef
Metadaten
Titel
Growth behavior of IMCs layer of the Sn–35Bi–1Ag on Cu, Ni–P/Cu and Ni–Co–P/Cu substrates during aging
verfasst von
Yulong Li
Zhiliang Wang
Xuewen Li
Xiaowu Hu
Min Lei
Publikationsdatum
23.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0423-0

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science: Materials in Electronics 2/2019 Zur Ausgabe

Neuer Inhalt