Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 7/2018

15.01.2018

Growth of Si-based core–shell nanowires through gases decomposition reactions with tunable morphologies, compositions, and electrochemical properties

verfasst von: Muhammad Mukhlis Ramly, Najwa Hamzan, Nur Fatin Farhanah Nazarudin, Guanghan Qian, Zarina Aspanut, Saadah Abdul Rahman, Boon Tong Goh

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Si-based core–shell nanowires grown on Ni-coated c-Si, glass and Ni foil substrates by hot-wire chemical vapor deposition were extensively investigated. The nanowires, which included NiSi nanowires, NiSi/Si core–shell nanowires, and NiSi/SiC core–shell nanowires, were grown by varying the Tfs from 1150 to 1950 °C. It was found that the morphologies of these nanowires were strongly dependent on the Tf attributed to the different decomposition reactions of SiH4 and CH4 molecules in the range of Tf. The hydrogen-assisted heat transfer effect induced the growth of the single-crystalline NiSi core, the polycrystalline Si, and amorphous SiC shells at Tf within the 1450–1650 and 1650–1950 °C ranges, respectively. The NiSi/Si core–shell nanowires demonstrated a relatively better electrochemical performance compared to the NiSi/SiC core–shell and NiSi nanowires with the specific capacity of 326 mF/cm2. The NiSi/Si core–shell nanowires exhibited good electrochemical stability at high current density with 61% capacity retention after 2000 cycles. The nucleation limited silicide reactions of the Si-based core–shell nanowires and the effects of the gas-phase reactions on the growth of the nanowires are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat P. Yang, R. Yan, M. Fardy, Semiconductor nanowire: what’s next? Nano Lett. 10(5), 1529–1536 (2010) P. Yang, R. Yan, M. Fardy, Semiconductor nanowire: what’s next? Nano Lett. 10(5), 1529–1536 (2010)
2.
Zurück zum Zitat Y. Xia et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003) Y. Xia et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)
3.
Zurück zum Zitat Z.L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv. Mater. 15(5), 432–436 (2003) Z.L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv. Mater. 15(5), 432–436 (2003)
4.
Zurück zum Zitat C.J. Kim et al., Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 19(21), 3637–3642 (2007) C.J. Kim et al., Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 19(21), 3637–3642 (2007)
5.
Zurück zum Zitat C.-Y. Lee et al., Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties. J. Phys. Chem. C 113(6), 2286–2289 (2009) C.-Y. Lee et al., Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties. J. Phys. Chem. C 113(6), 2286–2289 (2009)
6.
Zurück zum Zitat P.L. Taberna et al., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater. 5(7), 567–573 (2006) P.L. Taberna et al., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater. 5(7), 567–573 (2006)
7.
Zurück zum Zitat R. Liu et al., Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors. Phys. Chem. Chem. Phys. 12(17), 4309–4316 (2010) R. Liu et al., Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors. Phys. Chem. Chem. Phys. 12(17), 4309–4316 (2010)
8.
Zurück zum Zitat H. Chen et al., Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSix nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy 10(Supplement C), 245–258 (2014) H. Chen et al., Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSix nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy 10(Supplement C), 245–258 (2014)
9.
Zurück zum Zitat Q. Zhang et al., Growth of hierarchical 3D mesoporous NiSix/NiCo2O4 core/shell heterostructures on nickel foam for lithium-ion batteries. ChemSusChem 7(8), 2325–2334 (2014) Q. Zhang et al., Growth of hierarchical 3D mesoporous NiSix/NiCo2O4 core/shell heterostructures on nickel foam for lithium-ion batteries. ChemSusChem 7(8), 2325–2334 (2014)
10.
Zurück zum Zitat H. Chen et al., Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. J. Mater. Chem. A 2(22), 8483–8490 (2014) H. Chen et al., Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. J. Mater. Chem. A 2(22), 8483–8490 (2014)
11.
Zurück zum Zitat L.-F. Cui et al., Crystalline-amorphous core—shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9(1), 491–495 (2008) L.-F. Cui et al., Crystalline-amorphous core—shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9(1), 491–495 (2008)
12.
Zurück zum Zitat R. Yonghwan, T. Youngjo, Y. Kijung, Direct growth of core–shell SiC–SiO2 nanowires and field emission characteristics. Nanotechnology 16(7), S370 (2005) R. Yonghwan, T. Youngjo, Y. Kijung, Direct growth of core–shell SiC–SiO2 nanowires and field emission characteristics. Nanotechnology 16(7), S370 (2005)
13.
Zurück zum Zitat C. Tang, Y. Bando, Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl. Phys. Lett. 83(4), 659–661 (2003) C. Tang, Y. Bando, Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl. Phys. Lett. 83(4), 659–661 (2003)
14.
Zurück zum Zitat H.S. Song et al., Controllable fabrication of three-dimensional radial ZnO nanowire/silicon microrod hybrid architectures. Cryst. Growth Des. 11(1), 147–153 (2010) H.S. Song et al., Controllable fabrication of three-dimensional radial ZnO nanowire/silicon microrod hybrid architectures. Cryst. Growth Des. 11(1), 147–153 (2010)
15.
Zurück zum Zitat L.J. Lauhon et al., Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002) L.J. Lauhon et al., Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002)
16.
Zurück zum Zitat C.Y. Chen et al., ZnO/Al2 O3 core–shell nanorod arrays: growth, structural characterization, and luminescent properties. Nanotechnology 20(18), 185605 (2009) C.Y. Chen et al., ZnO/Al2 O3 core–shell nanorod arrays: growth, structural characterization, and luminescent properties. Nanotechnology 20(18), 185605 (2009)
17.
Zurück zum Zitat O. Demichel et al., Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 97(20), 201907 (2010) O. Demichel et al., Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 97(20), 201907 (2010)
18.
Zurück zum Zitat Chen et al., Self-directed growth of AlGaAs core–shell nanowires for visible light applications. Nano Lett. 7(9), 2584–2589 (2007) Chen et al., Self-directed growth of AlGaAs core–shell nanowires for visible light applications. Nano Lett. 7(9), 2584–2589 (2007)
19.
Zurück zum Zitat K.A. Pettigrew et al., Solution synthesis of Alkyl- and Alkyl/Alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem. Mater. 15(21), 4005–4011 (2003) K.A. Pettigrew et al., Solution synthesis of Alkyl- and Alkyl/Alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem. Mater. 15(21), 4005–4011 (2003)
20.
Zurück zum Zitat J.M. Buriak, Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102(5), 1271–1308 (2002) J.M. Buriak, Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102(5), 1271–1308 (2002)
21.
Zurück zum Zitat M. Taiji et al., Chemical reaction of Si nanoparticles during formation in gas phase observed by a time-resolved photoluminescence method. Jpn. J. Appl. Phys. 41(9R), 5739 (2002) M. Taiji et al., Chemical reaction of Si nanoparticles during formation in gas phase observed by a time-resolved photoluminescence method. Jpn. J. Appl. Phys. 41(9R), 5739 (2002)
22.
Zurück zum Zitat B. Sweryda-Krawiec, T. Cassagneau, J.H. Fendler, Surface modification of silicon nanocrystallites by alcohols. J. Phys. Chem. B 103(44), 9524–9529 (1999) B. Sweryda-Krawiec, T. Cassagneau, J.H. Fendler, Surface modification of silicon nanocrystallites by alcohols. J. Phys. Chem. B 103(44), 9524–9529 (1999)
23.
Zurück zum Zitat N.M.A. Hadia, H.A. Mohamed, Synthesis, structure and optical properties of single-crystalline In2O3 nanowires. J. Alloy. Compd. 547, 63–67 (2013) N.M.A. Hadia, H.A. Mohamed, Synthesis, structure and optical properties of single-crystalline In2O3 nanowires. J. Alloy. Compd. 547, 63–67 (2013)
24.
Zurück zum Zitat S. Xun et al., The effects of native oxide surface layer on the electrochemical performance of Si nanoparticle-based electrodes. J. Electrochem. Soc. 158(12), A1260–A1266 (2011) S. Xun et al., The effects of native oxide surface layer on the electrochemical performance of Si nanoparticle-based electrodes. J. Electrochem. Soc. 158(12), A1260–A1266 (2011)
25.
Zurück zum Zitat N.F.F.B. Nazarudin et al., Growth and structural property studies on NiSi/SiC core-shell nanowires by hot-wire chemical vapor deposition. Thin Solid Films 570, 243–248 (2014) N.F.F.B. Nazarudin et al., Growth and structural property studies on NiSi/SiC core-shell nanowires by hot-wire chemical vapor deposition. Thin Solid Films 570, 243–248 (2014)
26.
Zurück zum Zitat S.K. Chong et al., Effect of substrate to filament distance on formation and photoluminescence properties of indium catalyzed silicon nanowires using hot-wire chemical vapor deposition. Thin Solid Films, 529(Supplement C), 153–158 (2013) S.K. Chong et al., Effect of substrate to filament distance on formation and photoluminescence properties of indium catalyzed silicon nanowires using hot-wire chemical vapor deposition. Thin Solid Films, 529(Supplement C), 153–158 (2013)
27.
Zurück zum Zitat S.K. Chong et al., Effect of substrate temperature on gold-catalyzed silicon nanostructures growth by hot-wire chemical vapor deposition (HWCVD). Appl. Surf. Sci. 257(8), 3320–3324 (2011) S.K. Chong et al., Effect of substrate temperature on gold-catalyzed silicon nanostructures growth by hot-wire chemical vapor deposition (HWCVD). Appl. Surf. Sci. 257(8), 3320–3324 (2011)
28.
Zurück zum Zitat S. Chong et al., Silicon nanostructures fabricated by Au and SiH4 co-deposition technique using hot-wire chemical vapor deposition. Thin Solid Films 520, 74–78 (2011) S. Chong et al., Silicon nanostructures fabricated by Au and SiH4 co-deposition technique using hot-wire chemical vapor deposition. Thin Solid Films 520, 74–78 (2011)
29.
Zurück zum Zitat S.K. Chong et al., Study on the role of filament temperature on growth of indium-catalyzed silicon nanowires by the hot-wire chemical vapor deposition technique. Mater. Chem. Phys. 135(2), 635–643 (2012) S.K. Chong et al., Study on the role of filament temperature on growth of indium-catalyzed silicon nanowires by the hot-wire chemical vapor deposition technique. Mater. Chem. Phys. 135(2), 635–643 (2012)
30.
Zurück zum Zitat S.K. Chong et al., Synthesis of indium-catalyzed Si nanowires by hot-wire chemical vapor deposition. Mater. Lett. 65(15), 2452–2454 (2011) S.K. Chong et al., Synthesis of indium-catalyzed Si nanowires by hot-wire chemical vapor deposition. Mater. Lett. 65(15), 2452–2454 (2011)
31.
Zurück zum Zitat H.-Y. Mao et al., Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline SiC films and their use in Si heterojunction solar cells. Thin Solid Films 520(6), 2110–2114 (2012) H.-Y. Mao et al., Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline SiC films and their use in Si heterojunction solar cells. Thin Solid Films 520(6), 2110–2114 (2012)
32.
Zurück zum Zitat S. Klein et al., Low substrate temperature deposition of crystalline SiC using HWCVD. Thin Solid Films 501(1–2), 169–172 (2006) S. Klein et al., Low substrate temperature deposition of crystalline SiC using HWCVD. Thin Solid Films 501(1–2), 169–172 (2006)
33.
Zurück zum Zitat Y. Komura et al., Nanocrystalline cubic silicon carbide films prepared by hot-wire chemical vapor deposition using SiH4/CH4/H2 at a low substrate temperature. J. Non-Cryst. Solids 352(9–20), 1367–1370 (2006) Y. Komura et al., Nanocrystalline cubic silicon carbide films prepared by hot-wire chemical vapor deposition using SiH4/CH4/H2 at a low substrate temperature. J. Non-Cryst. Solids 352(9–20), 1367–1370 (2006)
34.
Zurück zum Zitat A.H.H. Al-Masoodi et al., Influences of hydrogen dilution on the growth of Si-based core–shell nanowires by HWCVD, and their structure and optical properties. Appl. Phys. A 122(3), 1–11 (2016) A.H.H. Al-Masoodi et al., Influences of hydrogen dilution on the growth of Si-based core–shell nanowires by HWCVD, and their structure and optical properties. Appl. Phys. A 122(3), 1–11 (2016)
35.
Zurück zum Zitat B.T. Goh, S.A. Rahman, Study of the growth, and effects of filament to substrate distance on the structural and optical properties of Si/SiC core–shell nanowires synthesized by hot-wire chemical vapor deposition. Mater. Chem. Phys. 147(3), 974–981 (2014) B.T. Goh, S.A. Rahman, Study of the growth, and effects of filament to substrate distance on the structural and optical properties of Si/SiC core–shell nanowires synthesized by hot-wire chemical vapor deposition. Mater. Chem. Phys. 147(3), 974–981 (2014)
36.
Zurück zum Zitat K. Tankala, T. DebRoy, Modeling of the role of atomic hydrogen in heat transfer during hot filament assisted deposition of diamond. J. Appl. Phys. 72(2), 712–718 (1992) K. Tankala, T. DebRoy, Modeling of the role of atomic hydrogen in heat transfer during hot filament assisted deposition of diamond. J. Appl. Phys. 72(2), 712–718 (1992)
37.
Zurück zum Zitat L. Zhihong et al., Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil. Nanotechnology 19(37), 375602 (2008) L. Zhihong et al., Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil. Nanotechnology 19(37), 375602 (2008)
38.
Zurück zum Zitat S.K. Chong et al., Radial growth of slanting-columnar nanocrystalline Si on Si nanowires. Chem. Phys. Lett. 515(1–3), 68–71 (2011) S.K. Chong et al., Radial growth of slanting-columnar nanocrystalline Si on Si nanowires. Chem. Phys. Lett. 515(1–3), 68–71 (2011)
39.
Zurück zum Zitat S.K. Chong et al., Control growth of silicon nanocolumns’ epitaxy on silicon nanowires. J. Nanopart. Res. 15(4), 1571 (2013) S.K. Chong et al., Control growth of silicon nanocolumns’ epitaxy on silicon nanowires. J. Nanopart. Res. 15(4), 1571 (2013)
40.
Zurück zum Zitat C. Lavoie et al., Towards implementation of a nickel silicide process for CMOS technologies. Microelectron. Eng. 70(2–4), 144–157 (2003) C. Lavoie et al., Towards implementation of a nickel silicide process for CMOS technologies. Microelectron. Eng. 70(2–4), 144–157 (2003)
41.
Zurück zum Zitat K. Kang et al., The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers. Nano Lett. 8(2), 431–436 (2008) K. Kang et al., The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers. Nano Lett. 8(2), 431–436 (2008)
42.
Zurück zum Zitat J. Kim, Thermodynamic mechanism of nickel silicide nanowire growth. Appl. Phys. Lett. 101(23), 233103 (2012) J. Kim, Thermodynamic mechanism of nickel silicide nanowire growth. Appl. Phys. Lett. 101(23), 233103 (2012)
43.
Zurück zum Zitat A. Tabata, Y. Komura, Preparation of nanocrystalline cubic silicon carbide thin films by hot-wire CVD at various filament-to-substrate distances. Surf. Coat. Technol. 201(22–23), 8986–8990 (2007) A. Tabata, Y. Komura, Preparation of nanocrystalline cubic silicon carbide thin films by hot-wire CVD at various filament-to-substrate distances. Surf. Coat. Technol. 201(22–23), 8986–8990 (2007)
44.
Zurück zum Zitat N.B. Hamzan et al., Effects of substrate temperature on the growth, structural and optical properties of NiSi/SiC core–shell nanowires. Appl. Surf. Sci. 343, 70–76 (2015) N.B. Hamzan et al., Effects of substrate temperature on the growth, structural and optical properties of NiSi/SiC core–shell nanowires. Appl. Surf. Sci. 343, 70–76 (2015)
45.
Zurück zum Zitat A. Dasgupta et al., Effect of filament and substrate temperatures on the structural and electrical properties of SiC thin films grown by the HWCVD technique. Thin Solid Films 516, 622–625 (2008) A. Dasgupta et al., Effect of filament and substrate temperatures on the structural and electrical properties of SiC thin films grown by the HWCVD technique. Thin Solid Films 516, 622–625 (2008)
46.
Zurück zum Zitat B. Tong Goh, S. Abdul Rahman, Synthesis of nickel catalyzed Si/SiC core–shell nanowires by HWCVD. J. Cryst. Growth 407, 25–30 (2014) B. Tong Goh, S. Abdul Rahman, Synthesis of nickel catalyzed Si/SiC core–shell nanowires by HWCVD. J. Cryst. Growth 407, 25–30 (2014)
47.
Zurück zum Zitat K. Kang et al., Low-temperature deterministic growth of ge nanowires using Cu solid catalysts. Adv. Mater. 20(24), 4684–4690 (2008) K. Kang et al., Low-temperature deterministic growth of ge nanowires using Cu solid catalysts. Adv. Mater. 20(24), 4684–4690 (2008)
48.
Zurück zum Zitat J.P. Gambino, E.G. Colgan, Mater. Chem. Phys. 52, 99 (1998) J.P. Gambino, E.G. Colgan, Mater. Chem. Phys. 52, 99 (1998)
49.
Zurück zum Zitat J.B. Hannon et al., The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440(7080), 69–71 (2006) J.B. Hannon et al., The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440(7080), 69–71 (2006)
50.
Zurück zum Zitat A.H.H. Al-Masoodi et al., Influences of hydrogen dilution on the growth of Si-based core–shell nanowires by HWCVD, and their structure and optical properties. Appl. Phys. A 122(3), 239 (2016) A.H.H. Al-Masoodi et al., Influences of hydrogen dilution on the growth of Si-based core–shell nanowires by HWCVD, and their structure and optical properties. Appl. Phys. A 122(3), 239 (2016)
51.
Zurück zum Zitat W. Zhou, X. Liu, Y. Zhang, Simple approach to β-SiC nanowires: synthesis, optical, and electrical properties. Appl. Phys. Lett. 89(22), 223124 (2006) W. Zhou, X. Liu, Y. Zhang, Simple approach to β-SiC nanowires: synthesis, optical, and electrical properties. Appl. Phys. Lett. 89(22), 223124 (2006)
52.
Zurück zum Zitat S.-L. Zhang et al., Effect of defects on optical phonon Raman spectra in SiC nanorods. Solid State Commun. 111(11), 647–651 (1999) S.-L. Zhang et al., Effect of defects on optical phonon Raman spectra in SiC nanorods. Solid State Commun. 111(11), 647–651 (1999)
53.
Zurück zum Zitat D.H. van Dorp, J.L. Weyher, J.J. Kelly, Anodic etching of SiC in alkaline solutions. J. Micromech. Microeng. 17(4), S50 (2007) D.H. van Dorp, J.L. Weyher, J.J. Kelly, Anodic etching of SiC in alkaline solutions. J. Micromech. Microeng. 17(4), S50 (2007)
54.
Zurück zum Zitat X. Xia et al., Etching and passivation of silicon in alkaline solution: a coupled chemical/electrochemical system. J. Phys. Chem. B 105(24), 5722–5729 (2001) X. Xia et al., Etching and passivation of silicon in alkaline solution: a coupled chemical/electrochemical system. J. Phys. Chem. B 105(24), 5722–5729 (2001)
55.
Zurück zum Zitat R. Zou et al., Dendritic heterojunction nanowire arrays for high-performance supercapacitors. Sci Rep. 5, 7862 (2015) R. Zou et al., Dendritic heterojunction nanowire arrays for high-performance supercapacitors. Sci Rep. 5, 7862 (2015)
56.
Zurück zum Zitat H. Zheng et al., TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors. J. Mater. Chem. C 1(2), 225–229 (2013) H. Zheng et al., TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors. J. Mater. Chem. C 1(2), 225–229 (2013)
57.
Zurück zum Zitat N. Chopra, J. Wu, P. Agrawal, Synthesis of nanoscale heterostructures comprised of metal nanowires, carbon nanotubes, and metal nanoparticles: investigation of their structure and electrochemical properties. J. Nanomater. 2015, 1–13 (2015) N. Chopra, J. Wu, P. Agrawal, Synthesis of nanoscale heterostructures comprised of metal nanowires, carbon nanotubes, and metal nanoparticles: investigation of their structure and electrochemical properties. J. Nanomater. 2015, 1–13 (2015)
58.
Zurück zum Zitat F.S. Omar et al., Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application. Electrochim. Acta 227, 41–48 (2017) F.S. Omar et al., Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application. Electrochim. Acta 227, 41–48 (2017)
59.
Zurück zum Zitat L.-L. Zhang et al., A vertical and cross-linked Ni (OH)2 network on cellulose-fiber covered with graphene as a binder-free electrode for advanced asymmetric supercapacitors. J. Mater. Chem. A 3(37), 19077–19084 (2015) L.-L. Zhang et al., A vertical and cross-linked Ni (OH)2 network on cellulose-fiber covered with graphene as a binder-free electrode for advanced asymmetric supercapacitors. J. Mater. Chem. A 3(37), 19077–19084 (2015)
60.
Zurück zum Zitat S.P. Jahromi et al., Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Adv. 5(18), 14010–14019 (2015) S.P. Jahromi et al., Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. RSC Adv. 5(18), 14010–14019 (2015)
Metadaten
Titel
Growth of Si-based core–shell nanowires through gases decomposition reactions with tunable morphologies, compositions, and electrochemical properties
verfasst von
Muhammad Mukhlis Ramly
Najwa Hamzan
Nur Fatin Farhanah Nazarudin
Guanghan Qian
Zarina Aspanut
Saadah Abdul Rahman
Boon Tong Goh
Publikationsdatum
15.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 7/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8529-y

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science: Materials in Electronics 7/2018 Zur Ausgabe

Neuer Inhalt