Skip to main content
Erschienen in: Rare Metals 1/2016

01.01.2016

Growth rate and composition of directionally solidified intermetallic TiAl–Nb alloys with different solidification conditions

verfasst von: Li-Wei Zhang, Jun-Pin Lin, Xiang-Jun Xu, Jian-Ping He, Xian-Fei Ding, Xiao-Ou Jin

Erschienen in: Rare Metals | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intermetallic Ti–xAl–8Nb (x = 41, 43, 45, 47, 49; at%) alloys were solidified unidirectionally upwards with a constant temperature gradient of G = 3.8 K·mm−1 at wide range of growth rates of v = 10–400 μm·s−1 using a Bridgman directional solidification (DS) furnace. Microstructural parameters including the primary dendrite arm spacing (λ 1), secondary dendrite arm spacing (λ 2), dendrite tip radius (R) and mushy zone depth (d) were measured statistically. The values of λ 1, λ 2, R and d decrease as the growth rate increases for a given composition (x). The values of λ 1, λ 2, R and v increase with the increase in x value, while the value of d firstly increases and then decreases with the increase in x value for a given v. The relationships between λ 1, λ 2 and R were analyzed by the linear regression. The average growth rate exponent of λ 1 is 0.29, which is in accordance with the previous experimental observations, and that of λ 2 is close to the previous experimental results, while those of R and d are lower than the results in other alloy systems. In addition, theoretical models for λ 1, λ 2 and R were compared with the experimental observations, and a comparison of the present experimental results with the theoretical models and previous experimental results was also made.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Rosa DM, Spinelli JE, Ferreira IL, Garcia A. Cellular growth during transient directional solidification of Pb–Sb alloys. J Alloy Compd. 2006;422(1–2):227.CrossRef Rosa DM, Spinelli JE, Ferreira IL, Garcia A. Cellular growth during transient directional solidification of Pb–Sb alloys. J Alloy Compd. 2006;422(1–2):227.CrossRef
[2]
Zurück zum Zitat Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):386.CrossRef Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):386.CrossRef
[3]
Zurück zum Zitat Kaya H, Cadirli E, Gunduz M. Directional cellular growth of Al-2 wt% Li bulk samples. Appl Phys A: Mater Sci Process. 2009;94(1):155.CrossRef Kaya H, Cadirli E, Gunduz M. Directional cellular growth of Al-2 wt% Li bulk samples. Appl Phys A: Mater Sci Process. 2009;94(1):155.CrossRef
[4]
Zurück zum Zitat Mullins WW, Sekerka R. Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys. 1964;35(2):444.CrossRef Mullins WW, Sekerka R. Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys. 1964;35(2):444.CrossRef
[5]
Zurück zum Zitat Lin YZ, Fu GS. Cao Rui, Chen JH, Hu DW. Compression damage and fracture behaviors of γ-TiAl-based alloys. Chin J Rare Met. 2014;38(2):334. Lin YZ, Fu GS. Cao Rui, Chen JH, Hu DW. Compression damage and fracture behaviors of γ-TiAl-based alloys. Chin J Rare Met. 2014;38(2):334.
[6]
Zurück zum Zitat Glicksman M, Koss M, Winsa E. Dendritic growth velocities in microgravity. Phys Rev Lett. 1994;73(4):573.CrossRef Glicksman M, Koss M, Winsa E. Dendritic growth velocities in microgravity. Phys Rev Lett. 1994;73(4):573.CrossRef
[7]
Zurück zum Zitat Grugel RN, Fedoseyev A, Kim S. Minimizing segregation during the controlled directional solidification of dendritic alloys. Metall Trans A: Phys Metall Mater Sci. 2002;33(12):3876.CrossRef Grugel RN, Fedoseyev A, Kim S. Minimizing segregation during the controlled directional solidification of dendritic alloys. Metall Trans A: Phys Metall Mater Sci. 2002;33(12):3876.CrossRef
[8]
Zurück zum Zitat Rosa DM, Spinelli JE, Ferreira IL, Garcia A. Cellular growth during transient directional solidification of Pb–Sb alloys. J Alloy Compd. 2006;422(1):227.CrossRef Rosa DM, Spinelli JE, Ferreira IL, Garcia A. Cellular growth during transient directional solidification of Pb–Sb alloys. J Alloy Compd. 2006;422(1):227.CrossRef
[9]
Zurück zum Zitat Kaya H, Çadırlı E, Böyük U, Maraşlı N. Investigation of directional solidified Al–Ti alloy. J Non-Cryst Solids. 2009;355(22):1231.CrossRef Kaya H, Çadırlı E, Böyük U, Maraşlı N. Investigation of directional solidified Al–Ti alloy. J Non-Cryst Solids. 2009;355(22):1231.CrossRef
[10]
Zurück zum Zitat Wang ZJ, Su GQ, Jia WP, Yang QX. Microstructure and performance of AZ80D magnesium alloy by purification of chloride flux containing Er. Rare Met. 2014;33(5):541.CrossRef Wang ZJ, Su GQ, Jia WP, Yang QX. Microstructure and performance of AZ80D magnesium alloy by purification of chloride flux containing Er. Rare Met. 2014;33(5):541.CrossRef
[11]
Zurück zum Zitat Feng J, Huang W, Lin X, Pan Q, Li T, Zhou Y. Primary cellular/dendritic spacing selection of Al–Zn alloy during unidirectional solidification. J Cryst Growth. 1999;197(1):393.CrossRef Feng J, Huang W, Lin X, Pan Q, Li T, Zhou Y. Primary cellular/dendritic spacing selection of Al–Zn alloy during unidirectional solidification. J Cryst Growth. 1999;197(1):393.CrossRef
[12]
Zurück zum Zitat Walker D, Mullis A. A mechanism for the equalisation of primary spacing during cellular and dendritic growth. J Mater Sci. 2001;36(4):865.CrossRef Walker D, Mullis A. A mechanism for the equalisation of primary spacing during cellular and dendritic growth. J Mater Sci. 2001;36(4):865.CrossRef
[13]
Zurück zum Zitat Pan Q, Huang W, Lin X, Zhou Y. Primary spacing selection of Cu Mn alloy under laser rapid solidification condition. J Cryst Growth. 1997;181(1):109.CrossRef Pan Q, Huang W, Lin X, Zhou Y. Primary spacing selection of Cu Mn alloy under laser rapid solidification condition. J Cryst Growth. 1997;181(1):109.CrossRef
[14]
Zurück zum Zitat Makkonen L. Spacing in solidification of dendritic arrays. J Cryst Growth. 2000;208(1):772.CrossRef Makkonen L. Spacing in solidification of dendritic arrays. J Cryst Growth. 2000;208(1):772.CrossRef
[15]
Zurück zum Zitat Böyük U, Maraşlı N, Kaya H, Çadırlı E, Keşlioğlu K. Directional solidification of Al–Cu–Ag alloy. Appl Phys A. 2009;95(3):923.CrossRef Böyük U, Maraşlı N, Kaya H, Çadırlı E, Keşlioğlu K. Directional solidification of Al–Cu–Ag alloy. Appl Phys A. 2009;95(3):923.CrossRef
[16]
Zurück zum Zitat Gündüz M. Directional solidification of aluminium copper alloys. Mater Sci Eng, A. 2002;327(2):167.CrossRef Gündüz M. Directional solidification of aluminium copper alloys. Mater Sci Eng, A. 2002;327(2):167.CrossRef
[17]
Zurück zum Zitat Fan JL, Li XZ, Su YQ, Chen RR, Guo JJ, Fu HZ. Directional solidification of Ti-49 at.%Al alloy. Appl Phys A: Mater Sci Process. 2011;105(1):239.CrossRef Fan JL, Li XZ, Su YQ, Chen RR, Guo JJ, Fu HZ. Directional solidification of Ti-49 at.%Al alloy. Appl Phys A: Mater Sci Process. 2011;105(1):239.CrossRef
[18]
Zurück zum Zitat Li XZ, Fan JL, Su YQ, Liu D, Guo JJ, Fu HZ. Lamellar orientation and growth direction of α phase in directionally solidified Ti–46Al–0.5W–0.5Si alloy. Intermetallics. 2012;27:38.CrossRef Li XZ, Fan JL, Su YQ, Liu D, Guo JJ, Fu HZ. Lamellar orientation and growth direction of α phase in directionally solidified Ti–46Al–0.5W–0.5Si alloy. Intermetallics. 2012;27:38.CrossRef
[19]
Zurück zum Zitat Langer J, Mller-Krumbhaar H. Theory of dendritic growth I. Elements of a stability analysis. Acta Metall. 1978;26(11):1681.CrossRef Langer J, Mller-Krumbhaar H. Theory of dendritic growth I. Elements of a stability analysis. Acta Metall. 1978;26(11):1681.CrossRef
[20]
Zurück zum Zitat Langer J, Müller-Krumbhaar H. Theory of dendritic growth II. Instabilities in the limit of vanishing surface tension. Acta Metall. 1978;26(11):1689.CrossRef Langer J, Müller-Krumbhaar H. Theory of dendritic growth II. Instabilities in the limit of vanishing surface tension. Acta Metall. 1978;26(11):1689.CrossRef
[21]
Zurück zum Zitat Trivedi R, Somboonsuk K. Constrained dendritic growth and spacing. Mater Sci Eng. 1984;65(1):65.CrossRef Trivedi R, Somboonsuk K. Constrained dendritic growth and spacing. Mater Sci Eng. 1984;65(1):65.CrossRef
[22]
Zurück zum Zitat Kurz W, Fisher D. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 1981;29(1):11.CrossRef Kurz W, Fisher D. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 1981;29(1):11.CrossRef
[23]
Zurück zum Zitat Trivedi R. Interdendritic spacing. II. A comparison of theory and experiment. Metall Trans A: Phys Metall Mater Sci. 1984;15A(6):977.CrossRef Trivedi R. Interdendritic spacing. II. A comparison of theory and experiment. Metall Trans A: Phys Metall Mater Sci. 1984;15A(6):977.CrossRef
[24]
Zurück zum Zitat Hunt J, Lu S-Z. Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metall Trans A. 1996;27(3):611.CrossRef Hunt J, Lu S-Z. Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metall Trans A. 1996;27(3):611.CrossRef
[25]
Zurück zum Zitat Bouchard D, Kirkaldy JS. Prediction of dendrite arm spacings in unsteady-and steady-state heat flow of unidirectionally solidified binary alloys. Metall Trans B. 1997;28(4):651.CrossRef Bouchard D, Kirkaldy JS. Prediction of dendrite arm spacings in unsteady-and steady-state heat flow of unidirectionally solidified binary alloys. Metall Trans B. 1997;28(4):651.CrossRef
[26]
Zurück zum Zitat Hunt J. Solidification and Casting of Metals. London: The Metal Society; 1979. 3. Hunt J. Solidification and Casting of Metals. London: The Metal Society; 1979. 3.
[27]
Zurück zum Zitat Kaya H, Cadirli E, Keslioglu K, Marasli N. Dependency of the dendritic arm spacings and tip radius on the growth rate and composition in the directionally solidified succinonitrile-carbon tetrabromide alloys. J Cryst Growth. 2005;276(3–4):583.CrossRef Kaya H, Cadirli E, Keslioglu K, Marasli N. Dependency of the dendritic arm spacings and tip radius on the growth rate and composition in the directionally solidified succinonitrile-carbon tetrabromide alloys. J Cryst Growth. 2005;276(3–4):583.CrossRef
[28]
Zurück zum Zitat Bouchard D, Kirkaldy J. Scaling of intragranuiar dendritic microstructure in ingot solidification. Metall Trans B. 1996;27(1):101.CrossRef Bouchard D, Kirkaldy J. Scaling of intragranuiar dendritic microstructure in ingot solidification. Metall Trans B. 1996;27(1):101.CrossRef
[29]
Zurück zum Zitat Lapin J, Gabalcová Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics. 2011;19(6):797.CrossRef Lapin J, Gabalcová Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics. 2011;19(6):797.CrossRef
[30]
Zurück zum Zitat Okamoto T, Kishitake K. Dendritic structure in unidirectionally solidified aluminum, tin, and zinc base binary alloys. J Cryst Growth. 1975;29(2):137.CrossRef Okamoto T, Kishitake K. Dendritic structure in unidirectionally solidified aluminum, tin, and zinc base binary alloys. J Cryst Growth. 1975;29(2):137.CrossRef
[31]
Zurück zum Zitat Spittle J. The effects of composition and cooling rate on the as-cast microstructures of Zn–Ti alloys. Metallography. 1972;5(5):423.CrossRef Spittle J. The effects of composition and cooling rate on the as-cast microstructures of Zn–Ti alloys. Metallography. 1972;5(5):423.CrossRef
[32]
Zurück zum Zitat Johnson D, Inui H, Yamaguchi M. Crystal growth of TiAl alloys. Intermetallics. 1998;6(7):647.CrossRef Johnson D, Inui H, Yamaguchi M. Crystal growth of TiAl alloys. Intermetallics. 1998;6(7):647.CrossRef
[33]
Zurück zum Zitat Liu Y, Yang G, Zhou Y. High-velocity banding structure in the laser-resolidified hypoperitectic Ti47Al53 alloy. J Cryst Growth. 2002;240(3):603.CrossRef Liu Y, Yang G, Zhou Y. High-velocity banding structure in the laser-resolidified hypoperitectic Ti47Al53 alloy. J Cryst Growth. 2002;240(3):603.CrossRef
Metadaten
Titel
Growth rate and composition of directionally solidified intermetallic TiAl–Nb alloys with different solidification conditions
verfasst von
Li-Wei Zhang
Jun-Pin Lin
Xiang-Jun Xu
Jian-Ping He
Xian-Fei Ding
Xiao-Ou Jin
Publikationsdatum
01.01.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 1/2016
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0637-8

Weitere Artikel der Ausgabe 1/2016

Rare Metals 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.