Skip to main content

2012 | OriginalPaper | Buchkapitel

Harnessing Cell–Biomaterial Interactions for Osteochondral Tissue Regeneration

verfasst von : Kyobum Kim, Diana M. Yoon, Antonios G. Mikos, F. Kurtis Kasper

Erschienen in: Tissue Engineering III: Cell - Surface Interactions for Tissue Culture

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Articular cartilage that is damaged or diseased often requires surgical intervention to repair the tissue; therefore, tissue engineering strategies have been developed to aid in cartilage regeneration. Tissue engineering approaches often require the integration of cells, biomaterials, and growth factors to direct and support tissue formation. A variety of cell types have been isolated from adipose, bone marrow, muscle, and skin tissue to promote cartilage regeneration. The interaction of cells with each other and with their surrounding environment has been shown to play a key role in cartilage engineering. In tissue engineering approaches, biomaterials are commonly used to provide an initial framework for cell recruitment and proliferation and tissue formation. Modifications of the properties of biomaterials, such as creating sites for cell binding, altering their physicochemical characteristics, and regulating the delivery of growth factors, can have a significant influence on chondrogenesis. Overall, the goal is to completely restore healthy cartilage within an articular cartilage defect. This chapter aims to provide information about the importance of cell–biomaterial interactions for the chondrogenic differentiation of various cell populations that can eventually produce functional cartilage matrix that is indicative of healthy cartilage tissue.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Freemont AJ, Hoyland J (2006) Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: its significance in cartilage repair and replacement. Eur J Radiol 57(1):32–36CrossRef Freemont AJ, Hoyland J (2006) Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: its significance in cartilage repair and replacement. Eur J Radiol 57(1):32–36CrossRef
2.
Zurück zum Zitat Yoon DM, Fisher JP (2006) Chondrocyte signaling and artificial matrices for articular cartilage engineering. Adv Exp Med Biol 585:67–86CrossRef Yoon DM, Fisher JP (2006) Chondrocyte signaling and artificial matrices for articular cartilage engineering. Adv Exp Med Biol 585:67–86CrossRef
3.
Zurück zum Zitat Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440CrossRef Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440CrossRef
4.
Zurück zum Zitat Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35(4):401–404CrossRef Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35(4):401–404CrossRef
5.
Zurück zum Zitat Janners MY, Searls RL (1970) Changes in rate of cellular proliferation during the differentiation of cartilage and muscle in the mesenchyme of the embryonic chick wing. Dev Biol 23(1):136–165CrossRef Janners MY, Searls RL (1970) Changes in rate of cellular proliferation during the differentiation of cartilage and muscle in the mesenchyme of the embryonic chick wing. Dev Biol 23(1):136–165CrossRef
6.
Zurück zum Zitat Fell HB (1925) The histogenesis of cartilage and bone in the long bones of the embryonic fowl. J Morphol Physiol 40(3):417–459CrossRef Fell HB (1925) The histogenesis of cartilage and bone in the long bones of the embryonic fowl. J Morphol Physiol 40(3):417–459CrossRef
7.
Zurück zum Zitat Thorogood PV, Hinchliffe JR (1975) An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J Embryol Exp Morphol 33(3):581–606 Thorogood PV, Hinchliffe JR (1975) An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J Embryol Exp Morphol 33(3):581–606
8.
Zurück zum Zitat Summerbell D, Wolpert L (1972) Cell density and cell division in the early morphogenesis of the chick wing. Nat New Biol 239(88):24–26 Summerbell D, Wolpert L (1972) Cell density and cell division in the early morphogenesis of the chick wing. Nat New Biol 239(88):24–26
9.
Zurück zum Zitat Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486 Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486
10.
Zurück zum Zitat Poole CA (1997) Articular cartilage chondrons: form, function and failure. J Anat 191(Pt 1):1–13CrossRef Poole CA (1997) Articular cartilage chondrons: form, function and failure. J Anat 191(Pt 1):1–13CrossRef
11.
Zurück zum Zitat Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ (2003) Articular cartilage biology. J Am Acad Orthop Surg 11(6):421–430 Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ (2003) Articular cartilage biology. J Am Acad Orthop Surg 11(6):421–430
12.
Zurück zum Zitat Bobick BE, Chen FH, Le AM, Tuan RS (2009) Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today 87(4):351–371CrossRef Bobick BE, Chen FH, Le AM, Tuan RS (2009) Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today 87(4):351–371CrossRef
13.
Zurück zum Zitat Buckwalter JA (1983) Articular cartilage. Instr Course Lect 32:349–370 Buckwalter JA (1983) Articular cartilage. Instr Course Lect 32:349–370
14.
Zurück zum Zitat Eyre DR, Wu JJ, Apone S (1987) A growing family of collagens in articular cartilage: identification of 5 genetically distinct types. J Rheumatol 14(Spec No):25–27 Eyre DR, Wu JJ, Apone S (1987) A growing family of collagens in articular cartilage: identification of 5 genetically distinct types. J Rheumatol 14(Spec No):25–27
15.
Zurück zum Zitat Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell–ECM interactions to tissue engineering. J Cell Physiol 199(2):174–180CrossRef Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell–ECM interactions to tissue engineering. J Cell Physiol 199(2):174–180CrossRef
16.
Zurück zum Zitat Heinegard D, Hascall VC (1974) Aggregation of cartilage proteoglycans. 3. Characteristics of the proteins isolated from trypsin digests of aggregates. J Biol Chem 249(13):4250–4256 Heinegard D, Hascall VC (1974) Aggregation of cartilage proteoglycans. 3. Characteristics of the proteins isolated from trypsin digests of aggregates. J Biol Chem 249(13):4250–4256
17.
Zurück zum Zitat Franzen A, Bjornsson S, Heinegard D (1981) Cartilage proteoglycan aggregate formation. Role of link protein. Biochem J 197(3):669–674 Franzen A, Bjornsson S, Heinegard D (1981) Cartilage proteoglycan aggregate formation. Role of link protein. Biochem J 197(3):669–674
18.
Zurück zum Zitat Newman AP (1998) Articular cartilage repair. Am J Sports Med 26(2):309–324 Newman AP (1998) Articular cartilage repair. Am J Sports Med 26(2):309–324
19.
Zurück zum Zitat Kao WJ (1999) Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials 20(23–24):2213–2221CrossRef Kao WJ (1999) Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials 20(23–24):2213–2221CrossRef
20.
Zurück zum Zitat Khalafi A, Schmid TM, Neu C, Reddi AH (2007) Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res 25(3):293–303CrossRef Khalafi A, Schmid TM, Neu C, Reddi AH (2007) Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res 25(3):293–303CrossRef
21.
Zurück zum Zitat Coates EE, Fisher JP (2010) Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann Biomed Eng 38(11):3371–3388CrossRef Coates EE, Fisher JP (2010) Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann Biomed Eng 38(11):3371–3388CrossRef
22.
Zurück zum Zitat Buckwalter JA, Mow VC, Ratcliffe A (1994) Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg 2(4):192–201 Buckwalter JA, Mow VC, Ratcliffe A (1994) Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg 2(4):192–201
23.
Zurück zum Zitat Wong M, Wuethrich P, Eggli P, Hunziker E (1996) Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J Orthop Res 14(3):424–432CrossRef Wong M, Wuethrich P, Eggli P, Hunziker E (1996) Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J Orthop Res 14(3):424–432CrossRef
24.
Zurück zum Zitat Toole BP, Jackson G, Gross J (1972) Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro. Proc Natl Acad Sci USA 69(6):1384–1386CrossRef Toole BP, Jackson G, Gross J (1972) Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro. Proc Natl Acad Sci USA 69(6):1384–1386CrossRef
25.
Zurück zum Zitat Kulyk WM, Upholt WB, Kosher RA (1989) Fibronectin gene expression during limb cartilage differentiation. Development 106(3):449–455 Kulyk WM, Upholt WB, Kosher RA (1989) Fibronectin gene expression during limb cartilage differentiation. Development 106(3):449–455
26.
Zurück zum Zitat Oberlender SA, Tuan RS (1994) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120(1):177–187 Oberlender SA, Tuan RS (1994) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120(1):177–187
27.
Zurück zum Zitat Widelitz RB, Jiang TX, Murray BA, Chuong CM (1993) Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis. J Cell Physiol 156(2):399–411CrossRef Widelitz RB, Jiang TX, Murray BA, Chuong CM (1993) Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis. J Cell Physiol 156(2):399–411CrossRef
28.
Zurück zum Zitat Yoon YM, Oh CD, Kim DY, Lee YS, Park JW, Huh TL et al (2000) Epidermal growth factor negatively regulates chondrogenesis of mesenchymal cells by modulating the protein kinase C-alpha, Erk-1, and p38 MAPK signaling pathways. J Biol Chem 275(16):12353–12359CrossRef Yoon YM, Oh CD, Kim DY, Lee YS, Park JW, Huh TL et al (2000) Epidermal growth factor negatively regulates chondrogenesis of mesenchymal cells by modulating the protein kinase C-alpha, Erk-1, and p38 MAPK signaling pathways. J Biol Chem 275(16):12353–12359CrossRef
29.
Zurück zum Zitat Wright E, Hargrave MR, Christiansen J, Cooper L, Kun J, Evans T et al (1995) The Sry-related gene SOX9 is expressed during chondrogenesis in mouse embryos. Nat Genet 9(1):15–20CrossRef Wright E, Hargrave MR, Christiansen J, Cooper L, Kun J, Evans T et al (1995) The Sry-related gene SOX9 is expressed during chondrogenesis in mouse embryos. Nat Genet 9(1):15–20CrossRef
30.
Zurück zum Zitat Ng LJ, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, Wright E et al (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183(1):108–121CrossRef Ng LJ, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, Wright E et al (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183(1):108–121CrossRef
31.
Zurück zum Zitat Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of SOX5 (L-SOX5), SOX6 and SOX9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17(19):5718–5733CrossRef Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of SOX5 (L-SOX5), SOX6 and SOX9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17(19):5718–5733CrossRef
32.
Zurück zum Zitat de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19(5):389–394CrossRef de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19(5):389–394CrossRef
33.
Zurück zum Zitat Mollenhauer J, Bee JA, Lizarbe MA, von der Mark K (1984) Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J Cell Biol 98(4):1572–1579CrossRef Mollenhauer J, Bee JA, Lizarbe MA, von der Mark K (1984) Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J Cell Biol 98(4):1572–1579CrossRef
34.
Zurück zum Zitat Culty M, Miyake K, Kincade PW, Sikorski E, Butcher EC, Underhill C (1990) The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol 111(6 Pt 1):2765–2774CrossRef Culty M, Miyake K, Kincade PW, Sikorski E, Butcher EC, Underhill C (1990) The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol 111(6 Pt 1):2765–2774CrossRef
35.
Zurück zum Zitat Loeser RF (2002) Integrins and cell signaling in chondrocytes. Biorheology 39(1–2):119–124 Loeser RF (2002) Integrins and cell signaling in chondrocytes. Biorheology 39(1–2):119–124
36.
Zurück zum Zitat Midwood KS, Salter DM (2001) NG2/HMPG modulation of human articular chondrocyte adhesion to type VI collagen is lost in osteoarthritis. J Pathol 195(5):631–635CrossRef Midwood KS, Salter DM (2001) NG2/HMPG modulation of human articular chondrocyte adhesion to type VI collagen is lost in osteoarthritis. J Pathol 195(5):631–635CrossRef
37.
Zurück zum Zitat Salter DM, Hughes DE, Simpson R, Gardner DL (1992) Integrin expression by human articular chondrocytes. Br J Rheumatol 31(4):231–234CrossRef Salter DM, Hughes DE, Simpson R, Gardner DL (1992) Integrin expression by human articular chondrocytes. Br J Rheumatol 31(4):231–234CrossRef
38.
Zurück zum Zitat Wood JJ, Malek MA, Frassica FJ, Polder JA, Mohan AK, Bloom ET et al (2006) Autologous cultured chondrocytes: adverse events reported to the United States food and drug administration. J Bone Joint Surg 88(3):503–507CrossRef Wood JJ, Malek MA, Frassica FJ, Polder JA, Mohan AK, Bloom ET et al (2006) Autologous cultured chondrocytes: adverse events reported to the United States food and drug administration. J Bone Joint Surg 88(3):503–507CrossRef
39.
Zurück zum Zitat Darling EM, Athanasiou KA (2005) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23(2):425–432CrossRef Darling EM, Athanasiou KA (2005) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23(2):425–432CrossRef
40.
Zurück zum Zitat Hauselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB et al (1994) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107(Pt 1):17–27 Hauselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB et al (1994) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107(Pt 1):17–27
41.
Zurück zum Zitat Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224CrossRef Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224CrossRef
42.
Zurück zum Zitat Becker AJ, Mc CE, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454CrossRef Becker AJ, Mc CE, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454CrossRef
43.
Zurück zum Zitat Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272 Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272
44.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317CrossRef Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317CrossRef
45.
46.
Zurück zum Zitat Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M (1980) Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res 151:294–307 Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M (1980) Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res 151:294–307
47.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRef
48.
Zurück zum Zitat Yang IH, Kim SH, Kim YH, Sun HJ, Kim SJ, Lee JW (2004) Comparison of phenotypic characterization between “alginate bead” and “pellet” culture systems as chondrogenic differentiation models for human mesenchymal stem cells. Yonsei Med J 45(5):891–900 Yang IH, Kim SH, Kim YH, Sun HJ, Kim SJ, Lee JW (2004) Comparison of phenotypic characterization between “alginate bead” and “pellet” culture systems as chondrogenic differentiation models for human mesenchymal stem cells. Yonsei Med J 45(5):891–900
49.
Zurück zum Zitat Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272CrossRef Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272CrossRef
50.
Zurück zum Zitat Derfoul A, Perkins GL, Hall DJ, Tuan RS (2006) Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24(6):1487–1495CrossRef Derfoul A, Perkins GL, Hall DJ, Tuan RS (2006) Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24(6):1487–1495CrossRef
51.
Zurück zum Zitat Fischer J, Dickhut A, Rickert M, Richter W (2010) Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum 62(9):2696–2706CrossRef Fischer J, Dickhut A, Rickert M, Richter W (2010) Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum 62(9):2696–2706CrossRef
52.
Zurück zum Zitat Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H et al (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48(2):418–429CrossRef Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H et al (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48(2):418–429CrossRef
53.
Zurück zum Zitat Tsuchiya K, Chen GP, Ushida T, Matsuno T, Tateishi T (2004) The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Mater Sci Eng C Biomim Supramol Syst 24(3):391–396CrossRef Tsuchiya K, Chen GP, Ushida T, Matsuno T, Tateishi T (2004) The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Mater Sci Eng C Biomim Supramol Syst 24(3):391–396CrossRef
54.
Zurück zum Zitat Ma HL, Hung SC, Lin SY, Chen YL, Lo WH (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 64(2):273–281CrossRef Ma HL, Hung SC, Lin SY, Chen YL, Lo WH (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 64(2):273–281CrossRef
55.
Zurück zum Zitat Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F (2010) Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng Part A 16(2):523–533CrossRef Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F (2010) Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng Part A 16(2):523–533CrossRef
56.
Zurück zum Zitat Chung C, Burdick JA (2009) Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A 15(2):243–254CrossRef Chung C, Burdick JA (2009) Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A 15(2):243–254CrossRef
57.
Zurück zum Zitat Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119(1):112–120CrossRef Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119(1):112–120CrossRef
58.
Zurück zum Zitat Park JS, Yang HN, Woo DG, Jeon SY, Park KH (2011) Chondrogenesis of human mesenchymal stem cells in fibrin constructs evaluated in vitro and in nude mouse and rabbit defects models. Biomaterials 32(6):1495–1507CrossRef Park JS, Yang HN, Woo DG, Jeon SY, Park KH (2011) Chondrogenesis of human mesenchymal stem cells in fibrin constructs evaluated in vitro and in nude mouse and rabbit defects models. Biomaterials 32(6):1495–1507CrossRef
59.
Zurück zum Zitat Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295CrossRef Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295CrossRef
60.
Zurück zum Zitat Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228CrossRef Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228CrossRef
61.
Zurück zum Zitat Estes BT, Diekman BO, Gimble JM, Guilak F (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5(7):1294–1311CrossRef Estes BT, Diekman BO, Gimble JM, Guilak F (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5(7):1294–1311CrossRef
62.
Zurück zum Zitat Cheng NC, Estes BT, Awad HA, Guilak F (2009) Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 15(2):231–241CrossRef Cheng NC, Estes BT, Awad HA, Guilak F (2009) Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 15(2):231–241CrossRef
63.
Zurück zum Zitat Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222CrossRef Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222CrossRef
64.
Zurück zum Zitat Betre H, Setton LA, Meyer DE, Chilkoti A (2002) Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules 3(5):910–916CrossRef Betre H, Setton LA, Meyer DE, Chilkoti A (2002) Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules 3(5):910–916CrossRef
65.
Zurück zum Zitat Merceron C, Portron S, Masson M, Fellah BH, Gauthier O, Lesoeur J et al (2010) Cartilage tissue engineering: From hydrogel to mesenchymal stem cells. Biomed Mater Eng 20(3):159–166 Merceron C, Portron S, Masson M, Fellah BH, Gauthier O, Lesoeur J et al (2010) Cartilage tissue engineering: From hydrogel to mesenchymal stem cells. Biomed Mater Eng 20(3):159–166
66.
Zurück zum Zitat Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z et al (2005) Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 9(4):929–939CrossRef Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z et al (2005) Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 9(4):929–939CrossRef
67.
Zurück zum Zitat Masuoka K, Asazuma T, Hattori H, Yoshihara Y, Sato M, Matsumura K et al (2006) Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits. J Biomed Mater Res B Appl Biomater 79(1):25–34 Masuoka K, Asazuma T, Hattori H, Yoshihara Y, Sato M, Matsumura K et al (2006) Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits. J Biomed Mater Res B Appl Biomater 79(1):25–34
68.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRef Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRef
69.
Zurück zum Zitat Kawaguchi J (2006) Generation of osteoblasts and chondrocytes from embryonic stem cells. Methods Mol Biol 330:135–148 Kawaguchi J (2006) Generation of osteoblasts and chondrocytes from embryonic stem cells. Methods Mol Biol 330:135–148
70.
Zurück zum Zitat Koay EJ, Hoben GM, Athanasiou KA (2007) Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25(9):2183–2190CrossRef Koay EJ, Hoben GM, Athanasiou KA (2007) Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25(9):2183–2190CrossRef
71.
Zurück zum Zitat zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5:1CrossRef zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5:1CrossRef
72.
Zurück zum Zitat Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rohwedel J (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 92(2):193–205CrossRef Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rohwedel J (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 92(2):193–205CrossRef
73.
Zurück zum Zitat Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60(12):3686–3692CrossRef Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60(12):3686–3692CrossRef
74.
Zurück zum Zitat Yang Z, Sui L, Toh WS, Lee EH, Cao T (2009) Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev 18(6):929–940CrossRef Yang Z, Sui L, Toh WS, Lee EH, Cao T (2009) Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev 18(6):929–940CrossRef
75.
Zurück zum Zitat Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F et al (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28(11):1187–1194CrossRef Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F et al (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28(11):1187–1194CrossRef
76.
Zurück zum Zitat Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25(4):950–960CrossRef Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25(4):950–960CrossRef
77.
Zurück zum Zitat Vats A, Bielby RC, Tolley N, Dickinson SC, Boccaccini AR, Hollander AP et al (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 12(6):1687–1697CrossRef Vats A, Bielby RC, Tolley N, Dickinson SC, Boccaccini AR, Hollander AP et al (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 12(6):1687–1697CrossRef
78.
Zurück zum Zitat Bigdeli N, Karlsson C, Strehl R, Concaro S, Hyllner J, Lindahl A (2009) Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 27(8):1812–1821CrossRef Bigdeli N, Karlsson C, Strehl R, Concaro S, Hyllner J, Lindahl A (2009) Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 27(8):1812–1821CrossRef
79.
Zurück zum Zitat Hwang NS, Varghese S, Zhang Z, Elisseeff J (2006) Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng 12(9):2695–2706CrossRef Hwang NS, Varghese S, Zhang Z, Elisseeff J (2006) Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng 12(9):2695–2706CrossRef
80.
Zurück zum Zitat Adachi N, Sato K, Usas A, Fu FH, Ochi M, Han CW et al (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29(9):1920–1930 Adachi N, Sato K, Usas A, Fu FH, Ochi M, Han CW et al (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29(9):1920–1930
81.
Zurück zum Zitat Nawata M, Wakitani S, Nakaya H, Tanigami A, Seki T, Nakamura Y et al (2005) Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum 52(1):155–163CrossRef Nawata M, Wakitani S, Nakaya H, Tanigami A, Seki T, Nakamura Y et al (2005) Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum 52(1):155–163CrossRef
82.
Zurück zum Zitat Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T et al (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54(2):433–442CrossRef Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T et al (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54(2):433–442CrossRef
83.
Zurück zum Zitat Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW (2001) Localization of chondrocyte precursors in periosteum. Osteoarthr Cartil 9(3):215–223CrossRef Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW (2001) Localization of chondrocyte precursors in periosteum. Osteoarthr Cartil 9(3):215–223CrossRef
84.
Zurück zum Zitat Choi YS, Noh SE, Lim SM, Lee CW, Kim CS, Im MW et al (2008) Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett 30(4):593–601CrossRef Choi YS, Noh SE, Lim SM, Lee CW, Kim CS, Im MW et al (2008) Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett 30(4):593–601CrossRef
85.
Zurück zum Zitat Miura Y, Fitzsimmons JS, Commisso CN, Gallay SH, O’Driscoll SW (1994) Enhancement of periosteal chondrogenesis in vitro. Dose-response for transforming growth factor-beta 1 (TGF-beta 1). Clin Orthop Relat Res 301:271–280 Miura Y, Fitzsimmons JS, Commisso CN, Gallay SH, O’Driscoll SW (1994) Enhancement of periosteal chondrogenesis in vitro. Dose-response for transforming growth factor-beta 1 (TGF-beta 1). Clin Orthop Relat Res 301:271–280
86.
Zurück zum Zitat Stevens MM, Marini RP, Martin I, Langer R, Prasad Shastri V (2004) FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis. J Orthop Res 22(5):1114–1119CrossRef Stevens MM, Marini RP, Martin I, Langer R, Prasad Shastri V (2004) FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis. J Orthop Res 22(5):1114–1119CrossRef
87.
Zurück zum Zitat Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11(1):55–64CrossRef Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11(1):55–64CrossRef
88.
Zurück zum Zitat Stevens MM, Qanadilo HF, Langer R, Shastri VP (2004) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25(5):887–894CrossRef Stevens MM, Qanadilo HF, Langer R, Shastri VP (2004) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25(5):887–894CrossRef
89.
Zurück zum Zitat Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94(2):258–263CrossRef Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94(2):258–263CrossRef
90.
Zurück zum Zitat Mizuno S, Glowacki J (1996) Chondroinduction of human dermal fibroblasts by demineralized bone in three-dimensional culture. Exp Cell Res 227(1):89–97CrossRef Mizuno S, Glowacki J (1996) Chondroinduction of human dermal fibroblasts by demineralized bone in three-dimensional culture. Exp Cell Res 227(1):89–97CrossRef
91.
Zurück zum Zitat French MM, Rose S, Canseco J, Athanasiou KA (2004) Chondrogenic differentiation of adult dermal fibroblasts. Ann Biomed Eng 32(1):50–56CrossRef French MM, Rose S, Canseco J, Athanasiou KA (2004) Chondrogenic differentiation of adult dermal fibroblasts. Ann Biomed Eng 32(1):50–56CrossRef
92.
Zurück zum Zitat Singh M, Pierpoint M, Mikos AG, Kasper FK (2011) Chondrogenic differentiation of neonatal human dermal fibroblasts encapsulated in alginate beads with hydrostatic compression under hypoxic conditions in the presence of bone morphogenetic protein-2. J Biomed Mater Res A 98:412–424 Singh M, Pierpoint M, Mikos AG, Kasper FK (2011) Chondrogenic differentiation of neonatal human dermal fibroblasts encapsulated in alginate beads with hydrostatic compression under hypoxic conditions in the presence of bone morphogenetic protein-2. J Biomed Mater Res A 98:412–424
93.
Zurück zum Zitat Deng Y, Hu JC, Athanasiou KA (2007) Isolation and chondroinduction of a dermis-isolated, aggrecan-sensitive subpopulation with high chondrogenic potential. Arthritis Rheum 56(1):168–176CrossRef Deng Y, Hu JC, Athanasiou KA (2007) Isolation and chondroinduction of a dermis-isolated, aggrecan-sensitive subpopulation with high chondrogenic potential. Arthritis Rheum 56(1):168–176CrossRef
94.
Zurück zum Zitat Nicoll SB, Wedrychowska A, Smith NR, Bhatnagar RS (2001) Modulation of proteoglycan and collagen profiles in human dermal fibroblasts by high density micromass culture and treatment with lactic acid suggests change to a chondrogenic phenotype. Connect Tissue Res 42(1):59–69CrossRef Nicoll SB, Wedrychowska A, Smith NR, Bhatnagar RS (2001) Modulation of proteoglycan and collagen profiles in human dermal fibroblasts by high density micromass culture and treatment with lactic acid suggests change to a chondrogenic phenotype. Connect Tissue Res 42(1):59–69CrossRef
95.
Zurück zum Zitat Liu X, Zhou G, Liu W, Zhang W, Cui L, Cao Y (2007) In vitro formation of lacuna structure by human dermal fibroblasts co-cultured with porcine chondrocytes on a 3D biodegradable scaffold. Biotechnol Lett 29(11):1685–1690CrossRef Liu X, Zhou G, Liu W, Zhang W, Cui L, Cao Y (2007) In vitro formation of lacuna structure by human dermal fibroblasts co-cultured with porcine chondrocytes on a 3D biodegradable scaffold. Biotechnol Lett 29(11):1685–1690CrossRef
96.
Zurück zum Zitat Rutherford RB, Moalli M, Franceschi RT, Wang D, Gu K, Krebsbach PH (2002) Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 8(3):441–452CrossRef Rutherford RB, Moalli M, Franceschi RT, Wang D, Gu K, Krebsbach PH (2002) Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 8(3):441–452CrossRef
97.
Zurück zum Zitat Yin S, Cen L, Wang C, Zhao G, Sun J, Liu W et al (2010) Chondrogenic transdifferentiation of human dermal fibroblasts stimulated with cartilage-derived morphogenetic protein 1. Tissue Eng Part A 16(5):1633–1643CrossRef Yin S, Cen L, Wang C, Zhao G, Sun J, Liu W et al (2010) Chondrogenic transdifferentiation of human dermal fibroblasts stimulated with cartilage-derived morphogenetic protein 1. Tissue Eng Part A 16(5):1633–1643CrossRef
98.
Zurück zum Zitat Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N (2011) Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest 121(2):640–657CrossRef Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N (2011) Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest 121(2):640–657CrossRef
99.
Zurück zum Zitat Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376(9739):440–448CrossRef Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376(9739):440–448CrossRef
100.
Zurück zum Zitat Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216CrossRef Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216CrossRef
101.
Zurück zum Zitat Fong EL, Chan CK, Goodman SB (2011) Stem cell homing in musculoskeletal injury. Biomaterials 32(2):395–409CrossRef Fong EL, Chan CK, Goodman SB (2011) Stem cell homing in musculoskeletal injury. Biomaterials 32(2):395–409CrossRef
102.
Zurück zum Zitat Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg 75(4):532–553 Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg 75(4):532–553
103.
Zurück zum Zitat Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59(1):63–72CrossRef Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59(1):63–72CrossRef
104.
Zurück zum Zitat Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925CrossRef Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925CrossRef
105.
Zurück zum Zitat Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14(2):149–165CrossRef Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14(2):149–165CrossRef
106.
Zurück zum Zitat Herlofsen SR, Kuchler AM, Melvik JE, Brinchmann JE (2011) Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in self-gelling alginate discs reveals novel chondrogenic signature gene clusters. Tissue Eng Part A 17:1003–1013CrossRef Herlofsen SR, Kuchler AM, Melvik JE, Brinchmann JE (2011) Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in self-gelling alginate discs reveals novel chondrogenic signature gene clusters. Tissue Eng Part A 17:1003–1013CrossRef
107.
Zurück zum Zitat Wang W, Li B, Yang J, Xin L, Li Y, Yin H et al (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31(34):8964–8973CrossRef Wang W, Li B, Yang J, Xin L, Li Y, Yin H et al (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31(34):8964–8973CrossRef
108.
Zurück zum Zitat Tigli RS, Cannizaro C, Gumusderelioglu M, Kaplan DL (2011) Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs. J Biomed Mater Res A 96(1):21–28 Tigli RS, Cannizaro C, Gumusderelioglu M, Kaplan DL (2011) Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs. J Biomed Mater Res A 96(1):21–28
109.
Zurück zum Zitat Wang Y, Bella E, Lee CS, Migliaresi C, Pelcastre L, Schwartz Z et al (2010) The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials 31(17):4672–4681CrossRef Wang Y, Bella E, Lee CS, Migliaresi C, Pelcastre L, Schwartz Z et al (2010) The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials 31(17):4672–4681CrossRef
110.
Zurück zum Zitat Neves SC, Teixeira LSM, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM et al (2011) Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32(4):1068–1079CrossRef Neves SC, Teixeira LSM, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM et al (2011) Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32(4):1068–1079CrossRef
111.
Zurück zum Zitat Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598CrossRef Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598CrossRef
112.
Zurück zum Zitat Chang CH, Liu HC, Lin CC, Chou CH, Lin FH (2003) Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24(26):4853–4858CrossRef Chang CH, Liu HC, Lin CC, Chou CH, Lin FH (2003) Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24(26):4853–4858CrossRef
113.
Zurück zum Zitat Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2499–2506CrossRef Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2499–2506CrossRef
114.
Zurück zum Zitat Baier Leach J, Bivens KA, Patrick CW Jr, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82(5):578–589CrossRef Baier Leach J, Bivens KA, Patrick CW Jr, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82(5):578–589CrossRef
115.
Zurück zum Zitat Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27(1):12–21CrossRef Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27(1):12–21CrossRef
116.
Zurück zum Zitat Varghese S, Elisseeff JH (2006) Hydrogels for musculoskeletal tissue engineering. Adv Polym Sci 203:95–144 Varghese S, Elisseeff JH (2006) Hydrogels for musculoskeletal tissue engineering. Adv Polym Sci 203:95–144
117.
Zurück zum Zitat Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces 60(2):137–157CrossRef Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces 60(2):137–157CrossRef
118.
Zurück zum Zitat Nguyen LH, Kudva AK, Guckert NL, Linse KD, Roy K (2011) Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Biomaterials 32(5):1327–1338CrossRef Nguyen LH, Kudva AK, Guckert NL, Linse KD, Roy K (2011) Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Biomaterials 32(5):1327–1338CrossRef
119.
Zurück zum Zitat Wang C, Varshney RR, Wang DA (2010) Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev 62(7–8):699–710CrossRef Wang C, Varshney RR, Wang DA (2010) Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev 62(7–8):699–710CrossRef
120.
Zurück zum Zitat Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364CrossRef Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364CrossRef
121.
Zurück zum Zitat Kuo YC, Wang CC (2011) Surface modification with peptide for enhancing chondrocyte adhesion and cartilage regeneration in porous scaffolds. Colloids Surf B Biointerfaces 84(1):63–70CrossRef Kuo YC, Wang CC (2011) Surface modification with peptide for enhancing chondrocyte adhesion and cartilage regeneration in porous scaffolds. Colloids Surf B Biointerfaces 84(1):63–70CrossRef
122.
Zurück zum Zitat Kaufmann D, Fiedler A, Junger A, Auernheimer J, Kessler H, Weberskirch R (2008) Chemical conjugation of linear and cyclic RGD moieties to a recombinant elastin-mimetic polypeptide—a versatile approach towards bioactive protein hydrogels. Macromol Biosci 8(6):577–588CrossRef Kaufmann D, Fiedler A, Junger A, Auernheimer J, Kessler H, Weberskirch R (2008) Chemical conjugation of linear and cyclic RGD moieties to a recombinant elastin-mimetic polypeptide—a versatile approach towards bioactive protein hydrogels. Macromol Biosci 8(6):577–588CrossRef
123.
Zurück zum Zitat Sawyer AA, Hennessy KM, Bellis SL (2007) The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials 28(3):383–392CrossRef Sawyer AA, Hennessy KM, Bellis SL (2007) The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials 28(3):383–392CrossRef
124.
Zurück zum Zitat Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG (2004) Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials 25(5):895–906CrossRef Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG (2004) Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials 25(5):895–906CrossRef
125.
Zurück zum Zitat Bahney CS, Hsu CW, Yoo JU, West JL, Johnstone B (2011) A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB J 25:1486–1496CrossRef Bahney CS, Hsu CW, Yoo JU, West JL, Johnstone B (2011) A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB J 25:1486–1496CrossRef
126.
Zurück zum Zitat Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31(34):8921–8930CrossRef Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31(34):8921–8930CrossRef
127.
Zurück zum Zitat You M, Peng G, Li J, Ma P, Wang Z, Shu W et al (2010) Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32(9):2305–2313CrossRef You M, Peng G, Li J, Ma P, Wang Z, Shu W et al (2010) Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32(9):2305–2313CrossRef
128.
Zurück zum Zitat Re’em T, Tsur-Gang O, Cohen S (2010) The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFbeta1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 31(26):6746–6755CrossRef Re’em T, Tsur-Gang O, Cohen S (2010) The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFbeta1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 31(26):6746–6755CrossRef
129.
Zurück zum Zitat Vonwil D, Schuler M, Barbero A, Strobel S, Wendt D, Textor M et al (2010) An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes. Eur Cell Mater 20:316–328 Vonwil D, Schuler M, Barbero A, Strobel S, Wendt D, Textor M et al (2010) An RGD-restricted substrate interface is sufficient for the adhesion, growth and cartilage forming capacity of human chondrocytes. Eur Cell Mater 20:316–328
130.
Zurück zum Zitat Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377CrossRef Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377CrossRef
131.
Zurück zum Zitat Villanueva I, Weigel CA, Bryant SJ (2009) Cell–matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater 5(8):2832–2846CrossRef Villanueva I, Weigel CA, Bryant SJ (2009) Cell–matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater 5(8):2832–2846CrossRef
132.
Zurück zum Zitat Chang JC, Hsu SH, Chen DC (2009) The promotion of chondrogenesis in adipose-derived adult stem cells by an RGD-chimeric protein in 3D alginate culture. Biomaterials 30(31):6265–6275CrossRef Chang JC, Hsu SH, Chen DC (2009) The promotion of chondrogenesis in adipose-derived adult stem cells by an RGD-chimeric protein in 3D alginate culture. Biomaterials 30(31):6265–6275CrossRef
133.
Zurück zum Zitat Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J et al (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci USA 105(52):20641–20646CrossRef Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J et al (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci USA 105(52):20641–20646CrossRef
134.
Zurück zum Zitat Connelly JT, Garcia AJ, Levenston ME (2007) Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials 28(6):1071–1083CrossRef Connelly JT, Garcia AJ, Levenston ME (2007) Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials 28(6):1071–1083CrossRef
135.
Zurück zum Zitat Matsuki K, Sasho T, Nakagawa K, Tahara M, Sugioka K, Ochiai N et al (2008) RGD peptide-induced cell death of chondrocytes and synovial cells. J Orthop Sci 13(6):524–532CrossRef Matsuki K, Sasho T, Nakagawa K, Tahara M, Sugioka K, Ochiai N et al (2008) RGD peptide-induced cell death of chondrocytes and synovial cells. J Orthop Sci 13(6):524–532CrossRef
136.
Zurück zum Zitat Davidson ENB, van der Kraan PM, van den Berg WB (2007) TGF-beta and osteoarthritis. Osteoarthr Cartil 15(6):597–604CrossRef Davidson ENB, van der Kraan PM, van den Berg WB (2007) TGF-beta and osteoarthritis. Osteoarthr Cartil 15(6):597–604CrossRef
137.
Zurück zum Zitat Park JS, Woo DG, Yang HN, Lim HJ, Park KM, Na K et al (2009) Chondrogenesis of human mesenchymal stem cells encapsulated in a hydrogel construct: neocartilage formation in animal models as both mice and rabbits. J Biomed Mater Res A 92(3):988–996 Park JS, Woo DG, Yang HN, Lim HJ, Park KM, Na K et al (2009) Chondrogenesis of human mesenchymal stem cells encapsulated in a hydrogel construct: neocartilage formation in animal models as both mice and rabbits. J Biomed Mater Res A 92(3):988–996
138.
Zurück zum Zitat Park JS, Woo DG, Yang HN, Na K, Park KH (2009) Transforming growth factor beta-3 bound with sulfate polysaccharide in synthetic extracellular matrix enhanced the biological activities for neocartilage formation in vivo. J Biomed Mater Res A 91(2):408–415 Park JS, Woo DG, Yang HN, Na K, Park KH (2009) Transforming growth factor beta-3 bound with sulfate polysaccharide in synthetic extracellular matrix enhanced the biological activities for neocartilage formation in vivo. J Biomed Mater Res A 91(2):408–415
139.
Zurück zum Zitat van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB (2009) TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil 17(12):1539–1545CrossRef van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB (2009) TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil 17(12):1539–1545CrossRef
140.
Zurück zum Zitat Zheng L, Fan HS, Sun J, Chen XN, Wang G, Zhang L et al (2010) Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A 93(2):783–792 Zheng L, Fan HS, Sun J, Chen XN, Wang G, Zhang L et al (2010) Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A 93(2):783–792
141.
Zurück zum Zitat Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415–428CrossRef Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415–428CrossRef
142.
Zurück zum Zitat Elder BD, Athanasiou KA (2009) Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthr Cartil 17(1):114–123CrossRef Elder BD, Athanasiou KA (2009) Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthr Cartil 17(1):114–123CrossRef
143.
Zurück zum Zitat Liu XW, Hu J, Man C, Zhang B, Ma YQ, Zhu SS (2011) Insulin-like growth factor-1 suspended in hyaluronan improves cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. Int J Oral Maxillofac Surg 40:184–190CrossRef Liu XW, Hu J, Man C, Zhang B, Ma YQ, Zhu SS (2011) Insulin-like growth factor-1 suspended in hyaluronan improves cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. Int J Oral Maxillofac Surg 40:184–190CrossRef
144.
Zurück zum Zitat Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A et al (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21(4):626–636CrossRef Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A et al (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21(4):626–636CrossRef
145.
Zurück zum Zitat Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA et al (2009) Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A 88(4):889–897 Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA et al (2009) Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A 88(4):889–897
146.
Zurück zum Zitat Schmidt MB, Chen EH, Lynch SE (2006) A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil 14(5):403–412CrossRef Schmidt MB, Chen EH, Lynch SE (2006) A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil 14(5):403–412CrossRef
147.
Zurück zum Zitat Jiang Y, Chen LK, Zhu DC, Zhang GR, Guo C, Qi YY et al (2010) The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Tissue Eng Part A 16(5):1621–1632CrossRef Jiang Y, Chen LK, Zhu DC, Zhang GR, Guo C, Qi YY et al (2010) The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Tissue Eng Part A 16(5):1621–1632CrossRef
148.
Zurück zum Zitat Miljkovic ND, Cooper GM, Marra KG (2008) Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthr Cartil 16(10):1121–1130CrossRef Miljkovic ND, Cooper GM, Marra KG (2008) Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthr Cartil 16(10):1121–1130CrossRef
149.
Zurück zum Zitat Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J et al (2005) A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthr Cartil 13(5):405–417CrossRef Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J et al (2005) A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthr Cartil 13(5):405–417CrossRef
150.
Zurück zum Zitat Majumdar MK, Wang E, Morris EA (2001) BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 189(3):275–284CrossRef Majumdar MK, Wang E, Morris EA (2001) BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 189(3):275–284CrossRef
151.
Zurück zum Zitat Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ (2005) Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320(2):269–276CrossRef Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ (2005) Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320(2):269–276CrossRef
152.
Zurück zum Zitat Fukuda A, Kato K, Hasegawa M, Hirata H, Sudo A, Okazaki K et al (2005) Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials 26(20):4301–4308CrossRef Fukuda A, Kato K, Hasegawa M, Hirata H, Sudo A, Okazaki K et al (2005) Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials 26(20):4301–4308CrossRef
153.
Zurück zum Zitat Huang X, Yang D, Yan W, Shi Z, Feng J, Gao Y et al (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(l-lactic acid) hybrid materials. Biomaterials 28(20):3091–3100CrossRef Huang X, Yang D, Yan W, Shi Z, Feng J, Gao Y et al (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(l-lactic acid) hybrid materials. Biomaterials 28(20):3091–3100CrossRef
154.
Zurück zum Zitat Miyakoshi N, Kobayashi M, Nozaka K, Okada K, Shimada Y, Itoi E (2005) Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits. Arch Orthop Trauma Surg 125(10):683–692CrossRef Miyakoshi N, Kobayashi M, Nozaka K, Okada K, Shimada Y, Itoi E (2005) Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits. Arch Orthop Trauma Surg 125(10):683–692CrossRef
155.
Zurück zum Zitat Nakayama J, Fujioka H, Nagura I, Kokubu T, Makino T, Kuroda R et al (2009) The effect of fibroblast growth factor-2 on autologous osteochondral transplantation. Int Orthop 33(1):275–280CrossRef Nakayama J, Fujioka H, Nagura I, Kokubu T, Makino T, Kuroda R et al (2009) The effect of fibroblast growth factor-2 on autologous osteochondral transplantation. Int Orthop 33(1):275–280CrossRef
156.
Zurück zum Zitat Siebert CH, Schneider U, Sopka S, Wahner T, Miltner O, Niedhart C (2006) Ingrowth of osteochondral grafts under the influence of growth factors: 6-month results of an animal study. Arch Orthop Trauma Surg 126(4):247–252CrossRef Siebert CH, Schneider U, Sopka S, Wahner T, Miltner O, Niedhart C (2006) Ingrowth of osteochondral grafts under the influence of growth factors: 6-month results of an animal study. Arch Orthop Trauma Surg 126(4):247–252CrossRef
157.
Zurück zum Zitat Tanaka H, Mizokami H, Shiigi E, Murata H, Ogasa H, Mine T et al (2004) Effects of basic fibroblast growth factor on the repair of large osteochondral defects of articular cartilage in rabbits: dose-response effects and long-term outcomes. Tissue Eng 10(3–4):633–641CrossRef Tanaka H, Mizokami H, Shiigi E, Murata H, Ogasa H, Mine T et al (2004) Effects of basic fibroblast growth factor on the repair of large osteochondral defects of articular cartilage in rabbits: dose-response effects and long-term outcomes. Tissue Eng 10(3–4):633–641CrossRef
158.
Zurück zum Zitat Weiss S, Hennig T, Bock R, Steck E, Richter W (2010) Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol 223(1):84–93 Weiss S, Hennig T, Bock R, Steck E, Richter W (2010) Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol 223(1):84–93
159.
Zurück zum Zitat Holland TA, Bodde EW, Cuijpers VM, Baggett LS, Tabata Y, Mikos AG et al (2007) Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthr Cartil 15(2):187–197CrossRef Holland TA, Bodde EW, Cuijpers VM, Baggett LS, Tabata Y, Mikos AG et al (2007) Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthr Cartil 15(2):187–197CrossRef
160.
Zurück zum Zitat Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101(1–3):111–125CrossRef Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101(1–3):111–125CrossRef
161.
Zurück zum Zitat Tabata Y, Nagano A, Ikada Y (1999) Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng 5(2):127–138CrossRef Tabata Y, Nagano A, Ikada Y (1999) Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng 5(2):127–138CrossRef
162.
Zurück zum Zitat Fan H, Zhang C, Li J, Bi L, Qin L, Wu H et al (2008) Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules 9(3):927–934CrossRef Fan H, Zhang C, Li J, Bi L, Qin L, Wu H et al (2008) Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules 9(3):927–934CrossRef
163.
Zurück zum Zitat Jo S, Shin H, Shung AK, Fisher JP, Mikos AG (2001) Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34(9):2839–2844CrossRef Jo S, Shin H, Shung AK, Fisher JP, Mikos AG (2001) Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34(9):2839–2844CrossRef
164.
Zurück zum Zitat Tabata Y, Hijikata S, Muniruzzaman M, Ikada Y (1999) Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed 10(1):79–94CrossRef Tabata Y, Hijikata S, Muniruzzaman M, Ikada Y (1999) Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed 10(1):79–94CrossRef
165.
Zurück zum Zitat Holland TA, Tabata Y, Mikos AG (2003) In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 91(3):299–313CrossRef Holland TA, Tabata Y, Mikos AG (2003) In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 91(3):299–313CrossRef
166.
Zurück zum Zitat Holland TA, Tessmar JK, Tabata Y, Mikos AG (2004) Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94(1):101–114CrossRef Holland TA, Tessmar JK, Tabata Y, Mikos AG (2004) Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94(1):101–114CrossRef
167.
Zurück zum Zitat Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26(34):7095–7103CrossRef Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26(34):7095–7103CrossRef
168.
Zurück zum Zitat Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG (2007) Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28(21):3217–3227CrossRef Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG (2007) Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28(21):3217–3227CrossRef
169.
Zurück zum Zitat Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK et al (2009) Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 10(3):541–546CrossRef Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK et al (2009) Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 10(3):541–546CrossRef
170.
Zurück zum Zitat Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E (2008) Sequential release of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds. Biomaterials 29(10):1518–1525CrossRef Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E (2008) Sequential release of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds. Biomaterials 29(10):1518–1525CrossRef
171.
Zurück zum Zitat Bouffi C, Thomas O, Bony C, Giteau A, Venier-Julienne MC, Jorgensen C et al (2010) The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells. Biomaterials 31(25):6485–6493CrossRef Bouffi C, Thomas O, Bony C, Giteau A, Venier-Julienne MC, Jorgensen C et al (2010) The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells. Biomaterials 31(25):6485–6493CrossRef
172.
Zurück zum Zitat Bae SE, Choi DH, Han DK, Park K (2010) Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells. J Control Release 143(1):23–30CrossRef Bae SE, Choi DH, Han DK, Park K (2010) Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells. J Control Release 143(1):23–30CrossRef
173.
Zurück zum Zitat Park JS, Na K, Woo DG, Yang HN, Park KH (2009) Determination of dual delivery for stem cell differentiation using dexamethasone and TGF-beta3 in/on polymeric microspheres. Biomaterials 30(27):4796–4805CrossRef Park JS, Na K, Woo DG, Yang HN, Park KH (2009) Determination of dual delivery for stem cell differentiation using dexamethasone and TGF-beta3 in/on polymeric microspheres. Biomaterials 30(27):4796–4805CrossRef
174.
Zurück zum Zitat Park JS, Yang HN, Woo DG, Chung HM, Park KH (2009) In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Eng Part A 15(8):2163–2175CrossRef Park JS, Yang HN, Woo DG, Chung HM, Park KH (2009) In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Eng Part A 15(8):2163–2175CrossRef
175.
Zurück zum Zitat Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson S et al (2010) Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther 17(6):779–789CrossRef Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson S et al (2010) Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther 17(6):779–789CrossRef
176.
Zurück zum Zitat Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K et al (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12(15):1171–1179CrossRef Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K et al (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12(15):1171–1179CrossRef
177.
Zurück zum Zitat Madry H, Orth P, Kaul G, Zurakowski D, Menger MD, Kohn D et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130(10):1311–1322CrossRef Madry H, Orth P, Kaul G, Zurakowski D, Menger MD, Kohn D et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130(10):1311–1322CrossRef
178.
Zurück zum Zitat Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR (2007) Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 14(10):804–813CrossRef Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR (2007) Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 14(10):804–813CrossRef
179.
Zurück zum Zitat Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD et al (2005) Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 12(2):229–238CrossRef Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD et al (2005) Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 12(2):229–238CrossRef
180.
Zurück zum Zitat Cucchiarini M, Schetting S, Terwilliger EF, Kohn D, Madry H (2009) rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions. Gene Ther 16(11):1363–1372CrossRef Cucchiarini M, Schetting S, Terwilliger EF, Kohn D, Madry H (2009) rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions. Gene Ther 16(11):1363–1372CrossRef
181.
Zurück zum Zitat Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS et al (2011) Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials 32(15):3700–3711CrossRef Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS et al (2011) Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials 32(15):3700–3711CrossRef
182.
Zurück zum Zitat Park JS, Woo DG, Sun BK, Chung HM, Im SJ, Choi YM et al (2007) In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J Control Release 124(1–2):51–59CrossRef Park JS, Woo DG, Sun BK, Chung HM, Im SJ, Choi YM et al (2007) In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J Control Release 124(1–2):51–59CrossRef
183.
Zurück zum Zitat Chen JP, Su CH (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243CrossRef Chen JP, Su CH (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243CrossRef
184.
Zurück zum Zitat Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL et al (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5(10):1195–1206 Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL et al (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5(10):1195–1206
185.
Zurück zum Zitat Kim K, Dean D, Lu A, Mikos AG, Fisher JP (2011) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 7(3):1249–1264CrossRef Kim K, Dean D, Lu A, Mikos AG, Fisher JP (2011) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 7(3):1249–1264CrossRef
186.
Zurück zum Zitat Vlacic-Zischke J, Hamlet SM, Friis T, Tonetti MS, Ivanovski S (2011) The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFbeta/BMP signalling in osteoblasts. Biomaterials 32(3):665–671CrossRef Vlacic-Zischke J, Hamlet SM, Friis T, Tonetti MS, Ivanovski S (2011) The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFbeta/BMP signalling in osteoblasts. Biomaterials 32(3):665–671CrossRef
187.
Zurück zum Zitat Lee JW, Kim YH, Park KD, Jee KS, Shin JW, Hahn SB (2004) Importance of integrin beta1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes. Biomaterials 25(10):1901–1909CrossRef Lee JW, Kim YH, Park KD, Jee KS, Shin JW, Hahn SB (2004) Importance of integrin beta1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes. Biomaterials 25(10):1901–1909CrossRef
188.
Zurück zum Zitat Hamilton DW, Riehle MO, Monaghan W, Curtis AS (2006) Chondrocyte aggregation on micrometric surface topography: a time-lapse study. Tissue Eng 12(1):189–199CrossRef Hamilton DW, Riehle MO, Monaghan W, Curtis AS (2006) Chondrocyte aggregation on micrometric surface topography: a time-lapse study. Tissue Eng 12(1):189–199CrossRef
189.
Zurück zum Zitat Jeong CG, Hollister SJ (2010) A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials 31(15):4304–4312CrossRef Jeong CG, Hollister SJ (2010) A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials 31(15):4304–4312CrossRef
190.
Zurück zum Zitat Kim K, Dean D, Wallace J, Breithaupt R, Mikos AG, Fisher JP (2011) The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 32(15):3750–3763CrossRef Kim K, Dean D, Wallace J, Breithaupt R, Mikos AG, Fisher JP (2011) The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 32(15):3750–3763CrossRef
191.
Zurück zum Zitat Kim K, Yeatts A, Dean D, Fisher JP (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16(5):523–539CrossRef Kim K, Yeatts A, Dean D, Fisher JP (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16(5):523–539CrossRef
192.
Zurück zum Zitat Nuernberger S, Cyran N, Albrecht C, Redl H, Vecsei V, Marlovits S (2011) The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 32(4):1032–1040CrossRef Nuernberger S, Cyran N, Albrecht C, Redl H, Vecsei V, Marlovits S (2011) The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 32(4):1032–1040CrossRef
193.
Zurück zum Zitat Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40(8):1686–1693CrossRef Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40(8):1686–1693CrossRef
194.
Zurück zum Zitat Martins A, Araujo JV, Reis RL, Neves NM (2007) Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine (Lond) 2(6):929–942CrossRef Martins A, Araujo JV, Reis RL, Neves NM (2007) Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine (Lond) 2(6):929–942CrossRef
195.
Zurück zum Zitat Li WJ, Jiang YJ, Tuan RS (2006) Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12(7):1775–1785CrossRef Li WJ, Jiang YJ, Tuan RS (2006) Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12(7):1775–1785CrossRef
196.
Zurück zum Zitat Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ et al (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609CrossRef Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ et al (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609CrossRef
197.
Zurück zum Zitat Spadaccio C, Rainer A, Trombetta M, Vadala G, Chello M, Covino E et al (2009) Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng 37(7):1376–1389CrossRef Spadaccio C, Rainer A, Trombetta M, Vadala G, Chello M, Covino E et al (2009) Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng 37(7):1376–1389CrossRef
198.
Zurück zum Zitat Wise JK, Yarin AL, Megaridis CM, Cho M (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A 15(4):913–921CrossRef Wise JK, Yarin AL, Megaridis CM, Cho M (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A 15(4):913–921CrossRef
199.
Zurück zum Zitat Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U et al (2010) Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering–response to osteogenic regulators. Tissue Eng Part A 16(2):393–404CrossRef Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U et al (2010) Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering–response to osteogenic regulators. Tissue Eng Part A 16(2):393–404CrossRef
200.
Zurück zum Zitat Hu J, Feng K, Liu X, Ma PX (2009) Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials 30(28):5061–5067CrossRef Hu J, Feng K, Liu X, Ma PX (2009) Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials 30(28):5061–5067CrossRef
201.
Zurück zum Zitat Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25):5158–5166CrossRef Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25):5158–5166CrossRef
202.
Zurück zum Zitat Casper ME, Fitzsimmons JS, Stone JJ, Meza AO, Huang Y, Ruesink TJ et al (2010) Tissue engineering of cartilage using poly-epsilon-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells. Osteoarthr Cartil 18(7):981–991CrossRef Casper ME, Fitzsimmons JS, Stone JJ, Meza AO, Huang Y, Ruesink TJ et al (2010) Tissue engineering of cartilage using poly-epsilon-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells. Osteoarthr Cartil 18(7):981–991CrossRef
203.
Zurück zum Zitat Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3(1):1–10CrossRef Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3(1):1–10CrossRef
204.
Zurück zum Zitat Sharma B, Williams CG, Kim TK, Sun D, Malik A, Khan M et al (2007) Designing zonal organization into tissue-engineered cartilage. Tissue Eng 13(2):405–414CrossRef Sharma B, Williams CG, Kim TK, Sun D, Malik A, Khan M et al (2007) Designing zonal organization into tissue-engineered cartilage. Tissue Eng 13(2):405–414CrossRef
205.
Zurück zum Zitat Ng KW, Ateshian GA, Hung CT (2009) Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng Part A 15(9):2315–2324CrossRef Ng KW, Ateshian GA, Hung CT (2009) Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng Part A 15(9):2315–2324CrossRef
206.
Zurück zum Zitat Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI (2002) Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng 8(5):827–837CrossRef Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI (2002) Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng 8(5):827–837CrossRef
207.
Zurück zum Zitat Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH (2004) Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng 10(9–10):1376–1385 Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH (2004) Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng 10(9–10):1376–1385
208.
Zurück zum Zitat Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA et al (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137CrossRef Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA et al (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137CrossRef
209.
Zurück zum Zitat Guo X, Liao J, Park H, Saraf A, Raphael RM, Tabata Y et al (2010) Effects of TGF-beta3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater 6(8):2920–2931CrossRef Guo X, Liao J, Park H, Saraf A, Raphael RM, Tabata Y et al (2010) Effects of TGF-beta3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater 6(8):2920–2931CrossRef
210.
Zurück zum Zitat Guo X, Park H, Liu G, Liu W, Cao Y, Tabata Y et al (2009) In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials 30(14):2741–2752CrossRef Guo X, Park H, Liu G, Liu W, Cao Y, Tabata Y et al (2009) In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials 30(14):2741–2752CrossRef
211.
Zurück zum Zitat Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167 Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167
212.
Zurück zum Zitat Guo X, Park H, Young S, Kretlow JD, van den Beucken JJ, Baggett LS et al (2010) Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater 6(1):39–47CrossRef Guo X, Park H, Young S, Kretlow JD, van den Beucken JJ, Baggett LS et al (2010) Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater 6(1):39–47CrossRef
213.
Zurück zum Zitat Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF et al (2010) Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthr Cartil 18(12):1608–1619CrossRef Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF et al (2010) Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthr Cartil 18(12):1608–1619CrossRef
214.
Zurück zum Zitat Fan H, Hu Y, Qin L, Li X, Wu H, Lv R (2006) Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A 77(4):785–794 Fan H, Hu Y, Qin L, Li X, Wu H, Lv R (2006) Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A 77(4):785–794
215.
Zurück zum Zitat Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L et al (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27(26):4573–4580CrossRef Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L et al (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27(26):4573–4580CrossRef
Metadaten
Titel
Harnessing Cell–Biomaterial Interactions for Osteochondral Tissue Regeneration
verfasst von
Kyobum Kim
Diana M. Yoon
Antonios G. Mikos
F. Kurtis Kasper
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2011_107

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.