Skip to main content

2017 | OriginalPaper | Buchkapitel

Harvesting Clean Energy Through H2 Production Using Cobalt-Boride-Based Nanocatalyst

verfasst von : R. Fernandes, N. Patel, D. C. Kothari, A. Miotello

Erschienen in: Advanced Nanomaterials in Biomedical, Sensor and Energy Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increase in the energy requirement and emission of greenhouse gases have been a growing concern. Hydrogen is recognized as a clean fuel and a promising solution for energy storage. At present, hydrogen required for fuel cell (FC) is mostly produced at industrial scales using the steam reforming of natural gas. These industries possibly leave CO and CO2 into the atmosphere, which are the major known reasons for the devastating climate changes witnessed today. Moreover, improper separation of these carbon contaminants from H2, especially CO (even at ppm level), affects the performance of FC by catalyst poisoning. “Hydrolysis of chemical hydrides” and “electrochemical water splitting,” through renewable energy sources, are considered as the cleanest and simplest techniques to produce FC grade H2 for onboard and off-board applications, respectively. Herein, the role of low-cost cobalt-boride (Co-B)-based nanocatalysts for both these applications is summarized.
Chemical hydrides have high hydrogen storage capacity in terms of volumetric and gravimetric efficiencies and are promising candidates to obtain pure hydrogen at a very high rate at room temperatures for on-broad applications. In the presence of certain catalysts, a large amount of pure hydrogen gas is produced by the hydrolysis of chemical hydrides. Noble metal catalysts (e.g., Ru and Pt) enhance the hydrogen production rate but are not viable for industrial application owing to their high cost and low availability. Low-cost amorphous Co-B nanocatalysts, prepared by reduction of metal salts, have attracted great attention in the catalysis community, owing to their unique properties such as isotropic structure, high concentration of coordinative unsaturated sites, relevant chemical stability, and low cost. However, Co-B nanoparticles agglomeration is a major problem, but it can be solved by introducing transition metals like Mo, W, and Cr as a possible atomic diffusion barrier. These promoter metals, mainly in the form of oxides, are efficient and even a small atomic concentration is able to significantly increase the surface area of the metal-boride catalyst nanoparticles by avoiding agglomeration. Nevertheless recovering and reusing powder catalysts is still an issue, which can be addressed by forming thin films on a substrate. Pulsed laser deposition (PLD) has emerged as a viable method for the production of nanoparticles on the surface of the thin films. By changing the PLD parameters, namely, energy and pulse duration, the morphology and the structure of the film can be optimized for a given application. Co-B catalysts developed by PLD in the form of nanoparticle-assembled films showed a performance similar to that of Pt metal and better than Pd metal for hydrogen production in the hydrolysis reaction.
For off-board purposes, a practical and sustainable way to produce hydrogen is electrolysis of water, driven by clean electric power that can be generated by renewable energy sources, such as photovoltaic and wind. To build highly efficient and cost-effective electrolyzer for this purpose, one of the key challenges is to develop active, stable, inexpensive, and scalable electrocatalysts for the two half reactions of water splitting, namely, oxygen and hydrogen evolution reactions. Although noble metal such as Pt is known as the best hydrogen-evolving catalyst in acidic solutions, the low abundance and high cost of such precious metal limit their large-scale application. Metal borides such as Co-B were also found to be excellent electrocatalysts for hydrogen evolution reaction (HER), active in wide pH ranging from 4 to 9. A significant improvement in activity and stability of Co-B electrocatalyst was obtained after introducing other transition metals, specifically Ni and Mo in Co-B showing electrocatalytic activity comparable to Pt. Co-Mo-B was also found to be equally active for oxygen evolutions in alkaline media. Examples given in this chapter clearly indicate that Co-B-based nanocatalysts can bridge the gap between the noble and nonmetal catalysts, especially for energy carrier generation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.K. Cheekatamarla, C.M. Finnerty, Reforming catalysts for hydrogen generation in fuel cell applications. J. Power Sources 160, 490–499 (2006)CrossRef P.K. Cheekatamarla, C.M. Finnerty, Reforming catalysts for hydrogen generation in fuel cell applications. J. Power Sources 160, 490–499 (2006)CrossRef
2.
Zurück zum Zitat T.W. Lin, C.J. Liu, J.Y. Lin, Facile synthesis of MoS3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction. Appl. Catal. B Environ. 134, 75–82 (2013)CrossRef T.W. Lin, C.J. Liu, J.Y. Lin, Facile synthesis of MoS3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction. Appl. Catal. B Environ. 134, 75–82 (2013)CrossRef
3.
Zurück zum Zitat J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Hakthranont, T.F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014)CrossRef J.D. Benck, T.R. Hellstern, J. Kibsgaard, P. Hakthranont, T.F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014)CrossRef
4.
Zurück zum Zitat H. Schlesinger, H. Brown, A. Finholt, J. Gilbreath, H. Hockstra, E. Hyde, Sodium Borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. JACS 75, 215–219 (1953)CrossRef H. Schlesinger, H. Brown, A. Finholt, J. Gilbreath, H. Hockstra, E. Hyde, Sodium Borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. JACS 75, 215–219 (1953)CrossRef
5.
Zurück zum Zitat T. Umegaki, J. Yan, X. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrog. Energy 34, 2303–2311 (2008)CrossRef T. Umegaki, J. Yan, X. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrog. Energy 34, 2303–2311 (2008)CrossRef
6.
Zurück zum Zitat H. Li, Y. Wu, H. Luo, M. Wang, Y. Xu, Liquid phase hydrogenation of acetonitrile to ethylamine over the co-B amorphous alloy catalyst. J. Catal. 214, 15–25 (2003)CrossRef H. Li, Y. Wu, H. Luo, M. Wang, Y. Xu, Liquid phase hydrogenation of acetonitrile to ethylamine over the co-B amorphous alloy catalyst. J. Catal. 214, 15–25 (2003)CrossRef
7.
Zurück zum Zitat S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora, A.K. Yadav, A. Miotello, D.C. Kothari, Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B Environ. 192, 126–133 (2015)CrossRef S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora, A.K. Yadav, A. Miotello, D.C. Kothari, Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B Environ. 192, 126–133 (2015)CrossRef
8.
Zurück zum Zitat R. Fernandes, N. Patel, A. Miotello, M. Filippi, Studies on catalytic behavior of co–Ni–B in hydrogen production by hydrolysis of NaBH4. J. Mol. Catal. A 298, 1–6 (2009)CrossRef R. Fernandes, N. Patel, A. Miotello, M. Filippi, Studies on catalytic behavior of co–Ni–B in hydrogen production by hydrolysis of NaBH4. J. Mol. Catal. A 298, 1–6 (2009)CrossRef
9.
Zurück zum Zitat R. Fernandes, N. Patel, A. Miotello, Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst. Appl. Catal. B Environ 92, 68–74 (2009) R. Fernandes, N. Patel, A. Miotello, Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst. Appl. Catal. B Environ 92, 68–74 (2009)
10.
Zurück zum Zitat N. Patel, R. Fernandes, G. Guella, A. Miotello, Promoting effect of transition metal-doped co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution. J. Catal. 271, 315–324 (2010)CrossRef N. Patel, R. Fernandes, G. Guella, A. Miotello, Promoting effect of transition metal-doped co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution. J. Catal. 271, 315–324 (2010)CrossRef
11.
Zurück zum Zitat R. Fernandes, N. Patel, A. Miotello, R. Jaiswal, D.C. Kothari, Dehydrogenation of ammonia borane with transition metal-doped co–B alloy catalysts. Int. J. Hydrog. Energy 37, 2397–2406 (2012)CrossRef R. Fernandes, N. Patel, A. Miotello, R. Jaiswal, D.C. Kothari, Dehydrogenation of ammonia borane with transition metal-doped co–B alloy catalysts. Int. J. Hydrog. Energy 37, 2397–2406 (2012)CrossRef
12.
Zurück zum Zitat N. Patel, R. Fernandes, A. Miotello, Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: A kinetic study. J. Power Sources 188, 411–420 (2009) N. Patel, R. Fernandes, A. Miotello, Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: A kinetic study. J. Power Sources 188, 411–420 (2009)
13.
Zurück zum Zitat R. Fernandes, N. Patel, A. Miotello, L. Calliari, Co-Mo-B-P alloy with enhanced catalytic properties for H2 production by hydrolysis of ammonia borane. Top. Catal. 55, 1032–1039 (2012)CrossRef R. Fernandes, N. Patel, A. Miotello, L. Calliari, Co-Mo-B-P alloy with enhanced catalytic properties for H2 production by hydrolysis of ammonia borane. Top. Catal. 55, 1032–1039 (2012)CrossRef
14.
Zurück zum Zitat N. Patel, R. Fernandes, G. Guella, A. Miotello, Nanoparticle-assembled CoB thin film for the hydrolysis of ammonia borane: A highly active catalyst for hydrogen production. Appl. Catal. B Environ. 95, 137–143 (2010)CrossRef N. Patel, R. Fernandes, G. Guella, A. Miotello, Nanoparticle-assembled CoB thin film for the hydrolysis of ammonia borane: A highly active catalyst for hydrogen production. Appl. Catal. B Environ. 95, 137–143 (2010)CrossRef
15.
Zurück zum Zitat N. Patel, A. Miotello, V. Bello, Pulsed laser deposition of co nanoparticles embedded on B-thin film: A catalyst produced by a single-step process to substitute precious metals. Appl. Catal. B Environ. 103, 31–38 (2011)CrossRef N. Patel, A. Miotello, V. Bello, Pulsed laser deposition of co nanoparticles embedded on B-thin film: A catalyst produced by a single-step process to substitute precious metals. Appl. Catal. B Environ. 103, 31–38 (2011)CrossRef
16.
Zurück zum Zitat R. Kelly, A. Miotello, Comments on explosive mechanisms of laser sputtering. Appl. Surf. Sci. 96, 205–215 (1996)CrossRef R. Kelly, A. Miotello, Comments on explosive mechanisms of laser sputtering. Appl. Surf. Sci. 96, 205–215 (1996)CrossRef
17.
Zurück zum Zitat D.G. Tong, X. Han, W. Chu, H. Chen, X.Y. Ji, Preparation and characterization of co-B flowers with mesoporous structure. Mater. Res. Bull. 43, 1327–1336 (2008)CrossRef D.G. Tong, X. Han, W. Chu, H. Chen, X.Y. Ji, Preparation and characterization of co-B flowers with mesoporous structure. Mater. Res. Bull. 43, 1327–1336 (2008)CrossRef
18.
Zurück zum Zitat D.G. Tong, X.L. Zeng, W. Chu, D. Wang, P. Wu, Magnetically recyclable hollow co-B nanospindles as catalysts for hydrogen generation from ammonia borane. J. Mater. Sci. 45, 2862–2867 (2010)CrossRef D.G. Tong, X.L. Zeng, W. Chu, D. Wang, P. Wu, Magnetically recyclable hollow co-B nanospindles as catalysts for hydrogen generation from ammonia borane. J. Mater. Sci. 45, 2862–2867 (2010)CrossRef
19.
Zurück zum Zitat D.G. Tong, W. Chu, P. Wua, L. Zhanga, Honeycomb-like co-B amorphous alloy catalysts assembled by a solution plasma process show enhanced catalytic hydrolysis activity for hydrogen generation. RSC Adv. 2, 2369–2376 (2012)CrossRef D.G. Tong, W. Chu, P. Wua, L. Zhanga, Honeycomb-like co-B amorphous alloy catalysts assembled by a solution plasma process show enhanced catalytic hydrolysis activity for hydrogen generation. RSC Adv. 2, 2369–2376 (2012)CrossRef
20.
Zurück zum Zitat N. Patel, R. Fernandes, N. Bazzanella, A. Miotello, Hydrogen production by hydrolysis of NaBH 4 using “Co-B nanoparticles supported on carbon film” catalyst synthesized by pulsed laser deposition. Catal. Today 170, 20–26 (2011) N. Patel, R. Fernandes, N. Bazzanella, A. Miotello, Hydrogen production by hydrolysis of NaBH 4 using “Co-B nanoparticles supported on carbon film” catalyst synthesized by pulsed laser deposition. Catal. Today 170, 20–26 (2011)
21.
Zurück zum Zitat N. Patel, R. Fernandes, S. Gupta, R. Edla, D.C. Kothari, A. Miotello, Co-B catalyst supported over mesoporous silica for hydrogen production by catalytic hydrolysis of ammonia borane: A study on influence of pore structure. Appl. Catal. B Environ. 140, 125–132 (2013)CrossRef N. Patel, R. Fernandes, S. Gupta, R. Edla, D.C. Kothari, A. Miotello, Co-B catalyst supported over mesoporous silica for hydrogen production by catalytic hydrolysis of ammonia borane: A study on influence of pore structure. Appl. Catal. B Environ. 140, 125–132 (2013)CrossRef
22.
Zurück zum Zitat J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported Nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136, 7587–7590 (2014)CrossRef J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported Nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136, 7587–7590 (2014)CrossRef
23.
Zurück zum Zitat Y. Sun, C. Liu, D.C. Grauer, J. Yano, J.R. Long, P. Yang, C.J. Chang, Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135, 17699–17702 (2013)CrossRef Y. Sun, C. Liu, D.C. Grauer, J. Yano, J.R. Long, P. Yang, C.J. Chang, Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135, 17699–17702 (2013)CrossRef
24.
Zurück zum Zitat K. Wang, D. Xi, C. Zhou, Z. Shi, H. Xia, G. Liu, G. Qiao, CoSe2 necklace-like nanowires supported by carbon fiber paper: A 3D integrated electrode for the hydrogen evolution reaction. J. Mater. Chem. A 3, 9415–9420 (2015)CrossRef K. Wang, D. Xi, C. Zhou, Z. Shi, H. Xia, G. Liu, G. Qiao, CoSe2 necklace-like nanowires supported by carbon fiber paper: A 3D integrated electrode for the hydrogen evolution reaction. J. Mater. Chem. A 3, 9415–9420 (2015)CrossRef
25.
Zurück zum Zitat H.W. Liang, S. Bruller, R. Dong, J. Zhang, X. Feng, K. Mullen, Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 6, 7992 (2015)CrossRef H.W. Liang, S. Bruller, R. Dong, J. Zhang, X. Feng, K. Mullen, Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 6, 7992 (2015)CrossRef
26.
Zurück zum Zitat L. Chen, M. Wang, K. Han, P. Zhang, F. Gloaguen, L. Sun, A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential. Energy Environ. Sci. 7, 329–334 (2014)CrossRef L. Chen, M. Wang, K. Han, P. Zhang, F. Gloaguen, L. Sun, A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential. Energy Environ. Sci. 7, 329–334 (2014)CrossRef
27.
Zurück zum Zitat S. Gupta, N. Patel, A. Miotello, D.C. Kothari, Cobalt-boride: An efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources 279, 620–625 (2015)CrossRef S. Gupta, N. Patel, A. Miotello, D.C. Kothari, Cobalt-boride: An efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources 279, 620–625 (2015)CrossRef
Metadaten
Titel
Harvesting Clean Energy Through H2 Production Using Cobalt-Boride-Based Nanocatalyst
verfasst von
R. Fernandes
N. Patel
D. C. Kothari
A. Miotello
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5346-7_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.