Skip to main content
Erschienen in: Journal of Iron and Steel Research International 11/2021

01.03.2021 | Original Paper

Heat transfer characteristics for double-jet in different flow regions on a thick plate

verfasst von: Xiu-hua Tian, Tian-liang Fu, Zhao-dong Wang, Guo-dong Wang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 11/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During multi-jet cooling, the complex hydrodynamic characteristics caused by the interaction between jets will affect the heat transfer of the plate. To further clarify the heat transfer characteristics in different flow regions, the double-jet cooling experiments were completed on a 50-mm-thick plate with the initial cooling temperature and jet angle in the range of 300–900 °C and 0°–60°, respectively. The inverse heat conduction was used to calculate the surface temperature and heat flux. Furthermore, the rewetting phenomenon, maximum heat flux and maximum cooling speed were studied. The results show that increasing the angle between jet and wall normal would increase the wetting front’s width downstream of the jet point. When the jet angle was 60°, the maximum value increased by 37.29 mm compared with that when the angle was 0°. The correlation between the width of the wetting front and the radial temperature gradient was further confirmed. In addition, it was found that the maximum heat flux would be affected by the duration of transition boiling, but not affected by complete wetting time. The results clarified the heat transfer mechanisms under various initial cooling temperature and inclination angle conditions on plate cooling in different flow regions, and provided valuable data for controlling heat transfer efficiency and improving cooling uniformity.
Literatur
[1]
Zurück zum Zitat T.L. Fu, X.T. Deng, G.H. Liu, Z.D. Wang, G.D. Wang, Int. J. Precis. Eng. Man. 17 (2016) 1503–1514.CrossRef T.L. Fu, X.T. Deng, G.H. Liu, Z.D. Wang, G.D. Wang, Int. J. Precis. Eng. Man. 17 (2016) 1503–1514.CrossRef
[2]
Zurück zum Zitat L. Qiu, S. Dubey, F.H. Choo, F. Duan, Int. J. Heat Mass Transfer 89 (2015) 42–58.CrossRef L. Qiu, S. Dubey, F.H. Choo, F. Duan, Int. J. Heat Mass Transfer 89 (2015) 42–58.CrossRef
[5]
Zurück zum Zitat A. Yildizeli, S. Cadirci, Int. J. Heat Mass Transfer 158 (2020) 119978.CrossRef A. Yildizeli, S. Cadirci, Int. J. Heat Mass Transfer 158 (2020) 119978.CrossRef
[6]
Zurück zum Zitat T.L. Fu, Z.D. Wang, Y. Li, J.D. Li, G.D. Wang, Appl. Therm. Eng. 70 (2014) 800–807.CrossRef T.L. Fu, Z.D. Wang, Y. Li, J.D. Li, G.D. Wang, Appl. Therm. Eng. 70 (2014) 800–807.CrossRef
[7]
Zurück zum Zitat T.L. Fu, Z.D. Wang, X.T. Deng, G.H. Liu, G.D. Wang, Appl. Therm. Eng. 2015 (78) 500–506.CrossRef T.L. Fu, Z.D. Wang, X.T. Deng, G.H. Liu, G.D. Wang, Appl. Therm. Eng. 2015 (78) 500–506.CrossRef
[8]
Zurück zum Zitat H. Fujimoto, N. Hayashi, J. Nakahara, K. Morisawa, T. Hama, H. Takuda, ISIJ Int. 56 (2016) 2016–2021.CrossRef H. Fujimoto, N. Hayashi, J. Nakahara, K. Morisawa, T. Hama, H. Takuda, ISIJ Int. 56 (2016) 2016–2021.CrossRef
[9]
Zurück zum Zitat A.K. Mozumder, M. Monde, P.L. Woodfield, M.A. Islam, Int. J. Heat Mass Transfer 49 (2006) 2877–2888.CrossRef A.K. Mozumder, M. Monde, P.L. Woodfield, M.A. Islam, Int. J. Heat Mass Transfer 49 (2006) 2877–2888.CrossRef
[10]
Zurück zum Zitat A.K. Mozumder, M. Monde, P.L. Woodfield, Int. J. Heat Mass Transfer 48 (2005) 5395–5407.CrossRef A.K. Mozumder, M. Monde, P.L. Woodfield, Int. J. Heat Mass Transfer 48 (2005) 5395–5407.CrossRef
[11]
Zurück zum Zitat P.L. Woodfield, A.K. Mozumder, M. Monde, Int. J. Heat Mass Transfer 52 (2009) 460–465.CrossRef P.L. Woodfield, A.K. Mozumder, M. Monde, Int. J. Heat Mass Transfer 52 (2009) 460–465.CrossRef
[12]
Zurück zum Zitat N. Karwa, T. Gambaryan-Roisman, P. Stephan, C. Tropea, Exp. Therm. Fluid Sci. 35 (2011) 1435–1443.CrossRef N. Karwa, T. Gambaryan-Roisman, P. Stephan, C. Tropea, Exp. Therm. Fluid Sci. 35 (2011) 1435–1443.CrossRef
[13]
Zurück zum Zitat A.K. Mozumder, P.L. Woodfield, M.A. Islam, M. Monde, Int. J. Heat Mass Transfer 50 (2007) 1559–1568.CrossRef A.K. Mozumder, P.L. Woodfield, M.A. Islam, M. Monde, Int. J. Heat Mass Transfer 50 (2007) 1559–1568.CrossRef
[14]
Zurück zum Zitat S.J. Yi, M. Kim, D. Kim, H.D. Kim, K.C. Kim, Int. J. Heat Mass Transfer 102 (2016) 691–702.CrossRef S.J. Yi, M. Kim, D. Kim, H.D. Kim, K.C. Kim, Int. J. Heat Mass Transfer 102 (2016) 691–702.CrossRef
[15]
Zurück zum Zitat C. Wang, X.K. Wang, W.D. Shi, W.G. Lu, S.K. Tan, L. Zhou, Exp. Therm. Fluid Sci. 89 (2017) 189–198.CrossRef C. Wang, X.K. Wang, W.D. Shi, W.G. Lu, S.K. Tan, L. Zhou, Exp. Therm. Fluid Sci. 89 (2017) 189–198.CrossRef
[16]
Zurück zum Zitat J.F. Lu, B. Bourouga, J. Ding, Int. Commun. Heat Mass Transfer 48 (2013) 15–21.CrossRef J.F. Lu, B. Bourouga, J. Ding, Int. Commun. Heat Mass Transfer 48 (2013) 15–21.CrossRef
[17]
Zurück zum Zitat X.H. Tian, T.L. Fu, J.W. Zhang, Z.D. Wang, G.D. Wang, ISIJ Int. 60 (2020) 1993–1999.CrossRef X.H. Tian, T.L. Fu, J.W. Zhang, Z.D. Wang, G.D. Wang, ISIJ Int. 60 (2020) 1993–1999.CrossRef
[18]
Zurück zum Zitat C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee, Exp. Therm. Fluid Sci. 42 (2012) 25–37.CrossRef C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee, Exp. Therm. Fluid Sci. 42 (2012) 25–37.CrossRef
[19]
Zurück zum Zitat B.X. Wang, D. Lin, Q. Xie, Z.D. Wang, G.D. Wang, Appl. Therm. Eng. 100 (2016) 902–910.CrossRef B.X. Wang, D. Lin, Q. Xie, Z.D. Wang, G.D. Wang, Appl. Therm. Eng. 100 (2016) 902–910.CrossRef
[20]
Zurück zum Zitat D.E. Hall, F.P. Incropera, R. Viskanta, J. Heat Transfer 123 (2001) 911–917.CrossRef D.E. Hall, F.P. Incropera, R. Viskanta, J. Heat Transfer 123 (2001) 911–917.CrossRef
[21]
Zurück zum Zitat D.E. Hall, F.P. Incropera, R. Viskanta, J. Heat Transfer 123 (2001) 901–910.CrossRef D.E. Hall, F.P. Incropera, R. Viskanta, J. Heat Transfer 123 (2001) 901–910.CrossRef
[22]
Zurück zum Zitat N. Karwa, P. Stephan, Int. J. Heat Mass Transfer 64 (2013) 1118–1126.CrossRef N. Karwa, P. Stephan, Int. J. Heat Mass Transfer 64 (2013) 1118–1126.CrossRef
[23]
Zurück zum Zitat S.A. Ebrahim, S. Chang, F.B. Cheung, S.M. Bajored, Appl. Therm. Eng. 140 (2018) 139–146.CrossRef S.A. Ebrahim, S. Chang, F.B. Cheung, S.M. Bajored, Appl. Therm. Eng. 140 (2018) 139–146.CrossRef
Metadaten
Titel
Heat transfer characteristics for double-jet in different flow regions on a thick plate
verfasst von
Xiu-hua Tian
Tian-liang Fu
Zhao-dong Wang
Guo-dong Wang
Publikationsdatum
01.03.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 11/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00553-3

Weitere Artikel der Ausgabe 11/2021

Journal of Iron and Steel Research International 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.