Skip to main content
Erschienen in: Neural Computing and Applications 1/2017

03.09.2015 | Original Article

Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study

verfasst von: Umar Khan, Naveed Ahmed, Syed Tauseef Mohyud-Din

Erschienen in: Neural Computing and Applications | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present article is dedicated to analyze the flow and heat transfer of carbon nanotube (CNT)-based nanofluids under the effects of velocity slip in a channel with non-parallel walls. Water is taken as a base fluid, and two forms of CNTs are used to perform the analysis, namely the single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs, respectively). Both the cases of narrowing and widening channel are discussed. The equations governing the flow are obtained by using an appropriate similarity transform. Numerical solution is obtained by using a well-known algorithm called Runge–Kutta–Fehlberg method. The influence of involved parameters on dimensionless velocity and temperature profiles is displayed graphically coupled with comprehensive discussions. Also, to verify the numerical results, a comparative analysis is carried out that ensures the authenticity of the results. Variation of skin friction coefficient and the rate of heat transfer at the walls are also performed. Some already existing solutions of the particular cases of the same problem are also verified as the special cases of the solutions obtained here.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jeffery GB (1915) The two-dimensional steady motion of a viscous fluid. Phil Mag 6:455–465CrossRefMATH Jeffery GB (1915) The two-dimensional steady motion of a viscous fluid. Phil Mag 6:455–465CrossRefMATH
2.
Zurück zum Zitat Hamel G (1916) Spiralförmige Bewgungen Zäher Flüssigkeiten, Jahresber. Deutsch Math Verein 25:34–60MATH Hamel G (1916) Spiralförmige Bewgungen Zäher Flüssigkeiten, Jahresber. Deutsch Math Verein 25:34–60MATH
3.
Zurück zum Zitat Goldstein S (1938) Modern developments in fluid mechanics. Clarendon Press, Oxford Goldstein S (1938) Modern developments in fluid mechanics. Clarendon Press, Oxford
4.
Zurück zum Zitat Rosenhead L (1940) The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc R Soc A 175:436–467CrossRefMATH Rosenhead L (1940) The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc R Soc A 175:436–467CrossRefMATH
5.
Zurück zum Zitat Fraenkel LE (1962) On the Jeffery–Hamel solutions for flow between plane walls. Proc R Soc A 267:119–138CrossRefMATH Fraenkel LE (1962) On the Jeffery–Hamel solutions for flow between plane walls. Proc R Soc A 267:119–138CrossRefMATH
6.
Zurück zum Zitat Batchelor K (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH Batchelor K (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH
7.
Zurück zum Zitat Sadri R (1997) Channel entrance flow. PhD thesis, Dept. Mechanical Engineering, the University of Western Ontario Sadri R (1997) Channel entrance flow. PhD thesis, Dept. Mechanical Engineering, the University of Western Ontario
8.
Zurück zum Zitat Hayat T, Nawaz M, Sajid M (2010) Effect of heat transfer on the flow of a second-grade fluid in divergent/convergent channel. Int J Numer Methods Fluids 64:761–766MathSciNetMATH Hayat T, Nawaz M, Sajid M (2010) Effect of heat transfer on the flow of a second-grade fluid in divergent/convergent channel. Int J Numer Methods Fluids 64:761–766MathSciNetMATH
9.
Zurück zum Zitat Asadullah M, Khan U, Manzoor R, Ahmed N, Mohyud-Din ST (2013) MHD flow of a Jeffery fluid in converging and diverging channels. Int J Mod Math Sci 6(2):92–106 Asadullah M, Khan U, Manzoor R, Ahmed N, Mohyud-Din ST (2013) MHD flow of a Jeffery fluid in converging and diverging channels. Int J Mod Math Sci 6(2):92–106
10.
Zurück zum Zitat Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows, ASME FED, vol 231/MD-vol 66, pp 99–105 Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows, ASME FED, vol 231/MD-vol 66, pp 99–105
11.
Zurück zum Zitat Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef
12.
Zurück zum Zitat Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1(3):187–191CrossRef Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1(3):187–191CrossRef
13.
Zurück zum Zitat Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transfer 128:240–250CrossRef Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transfer 128:240–250CrossRef
14.
Zurück zum Zitat Xue Q (2005) Model for thermal conductivity of carbon nanotube-based composites. Phys B 368:302–307CrossRef Xue Q (2005) Model for thermal conductivity of carbon nanotube-based composites. Phys B 368:302–307CrossRef
15.
Zurück zum Zitat Maxwell JC (1904) Electricity and magnetism, 3rd edn. Clarendon, Oxford Maxwell JC (1904) Electricity and magnetism, 3rd edn. Clarendon, Oxford
16.
Zurück zum Zitat Anwar MI, Sharidan S, Khan I, Salleh MZ (2014) Magnetohydrodynamic flow of a nanofluid over a nonlinearly stretching sheet. Indian J Chem Technol 21:199–204 Anwar MI, Sharidan S, Khan I, Salleh MZ (2014) Magnetohydrodynamic flow of a nanofluid over a nonlinearly stretching sheet. Indian J Chem Technol 21:199–204
17.
Zurück zum Zitat Khalid A, Khan I, Shafie S (2015) Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur Phys J Plus 130(57) Khalid A, Khan I, Shafie S (2015) Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur Phys J Plus 130(57)
18.
Zurück zum Zitat Ali F, Khan I, Ulhaq S, Mustapha N, Shafie S (2012) Unsteady magnetohydrodynamic oscillatory flow of viscoelastic fluids in a porous channel with heat and mass transfer. J Phys Soc Jpn 81(6) Ali F, Khan I, Ulhaq S, Mustapha N, Shafie S (2012) Unsteady magnetohydrodynamic oscillatory flow of viscoelastic fluids in a porous channel with heat and mass transfer. J Phys Soc Jpn 81(6)
19.
Zurück zum Zitat Mabood F, Khan WA, Ismail AIM (2015) MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J Magn Magn Mater 374:569–576CrossRef Mabood F, Khan WA, Ismail AIM (2015) MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study. J Magn Magn Mater 374:569–576CrossRef
20.
Zurück zum Zitat Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43CrossRef Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43CrossRef
21.
Zurück zum Zitat Nadeem S, Haq RU (2013) Effect of thermal radiation for megnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci 11:32–40CrossRef Nadeem S, Haq RU (2013) Effect of thermal radiation for megnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci 11:32–40CrossRef
22.
Zurück zum Zitat Khan U, Ahmed N, Khan SIU, Mohyud-din ST (2014) Thermo-diffusion and MHD effects on stagnation point flow towards a stretching sheet in a nanofluid. Propuls Power Res 3(3):151–158CrossRef Khan U, Ahmed N, Khan SIU, Mohyud-din ST (2014) Thermo-diffusion and MHD effects on stagnation point flow towards a stretching sheet in a nanofluid. Propuls Power Res 3(3):151–158CrossRef
23.
Zurück zum Zitat Ellahi R, Hameed M (2012) Numerical analysis of steady flows with heat transfer, MHD and nonlinear slip effects. Int J Numer Methods Heat Fluid Flow 22(1):24–38CrossRef Ellahi R, Hameed M (2012) Numerical analysis of steady flows with heat transfer, MHD and nonlinear slip effects. Int J Numer Methods Heat Fluid Flow 22(1):24–38CrossRef
24.
Zurück zum Zitat Sheikholeslami M, Ellahi R, Hassan M, Soleimani S (2014) A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow 24(8):1906–1927CrossRef Sheikholeslami M, Ellahi R, Hassan M, Soleimani S (2014) A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow 24(8):1906–1927CrossRef
25.
Zurück zum Zitat Nawaz M, Zeeshan A, Ellahi R, Abbasbandy S, Rashidi S (2015) Joules heating effects on stagnation point flow over a stretching cylinder by means of genetic algorithm and Nelder–Mead method. Int J Numer Methods Heat Fluid Flow 25(3):665–684CrossRef Nawaz M, Zeeshan A, Ellahi R, Abbasbandy S, Rashidi S (2015) Joules heating effects on stagnation point flow over a stretching cylinder by means of genetic algorithm and Nelder–Mead method. Int J Numer Methods Heat Fluid Flow 25(3):665–684CrossRef
26.
Zurück zum Zitat Hatami M, Ganji DD (2014) MHD nanofluid flow analysis in divergent and convergent channels using WRMs and numerical method. Int J Numer Methods Heat Fluid Flow 24(5):1191–1203MathSciNetCrossRef Hatami M, Ganji DD (2014) MHD nanofluid flow analysis in divergent and convergent channels using WRMs and numerical method. Int J Numer Methods Heat Fluid Flow 24(5):1191–1203MathSciNetCrossRef
27.
Zurück zum Zitat Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl Math Mech Engl Ed 33:25–36MathSciNetCrossRefMATH Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl Math Mech Engl Ed 33:25–36MathSciNetCrossRefMATH
28.
Zurück zum Zitat Mohyud-Din ST, Khan U, Ahmed N, Sikander W (2015) A study of velocity and temperature slip effects on flow of water based nanofluids in converging and diverging channels. Int J Appl Comput Math. doi:10.1007/s40819-015-0032-z MathSciNet Mohyud-Din ST, Khan U, Ahmed N, Sikander W (2015) A study of velocity and temperature slip effects on flow of water based nanofluids in converging and diverging channels. Int J Appl Comput Math. doi:10.​1007/​s40819-015-0032-z MathSciNet
29.
Zurück zum Zitat Ganji DD, Hatami M (2014) Three weighted residual methods based on Jeffery–Hamel flow. Int J Numer Methods Heat Fluid Flow 24(5):1191–1203MathSciNetCrossRef Ganji DD, Hatami M (2014) Three weighted residual methods based on Jeffery–Hamel flow. Int J Numer Methods Heat Fluid Flow 24(5):1191–1203MathSciNetCrossRef
30.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
31.
Zurück zum Zitat Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2004) Applications of carbon nanotubes in the twenty-first century. Philos Trans R Soc Lond A 362:2223−2238CrossRef Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2004) Applications of carbon nanotubes in the twenty-first century. Philos Trans R Soc Lond A 362:2223−2238CrossRef
32.
Zurück zum Zitat Saito R, Dresselhaus G, Dresselhaus MS (2001) Physical properties of carbon nanotubes. Imperial College Press, SingaporeMATH Saito R, Dresselhaus G, Dresselhaus MS (2001) Physical properties of carbon nanotubes. Imperial College Press, SingaporeMATH
33.
Zurück zum Zitat Murshed SM, Nieto de Castro CA, Lourenço MJV, Lopes MLM, Santos FJV (2011) A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev 15:2342–2354CrossRef Murshed SM, Nieto de Castro CA, Lourenço MJV, Lopes MLM, Santos FJV (2011) A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev 15:2342–2354CrossRef
35.
36.
Zurück zum Zitat Ul R, Haq S, Nadeem ZH, Khan NFM (2015) Noor, convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B 457:40–47CrossRef Ul R, Haq S, Nadeem ZH, Khan NFM (2015) Noor, convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B 457:40–47CrossRef
37.
Zurück zum Zitat Akbar NS, Butt AW (2014) CNT suspended nanofluid analysis in a flexible tube with ciliated walls. Eur Phys J Plus 129(8):1–10 Akbar NS, Butt AW (2014) CNT suspended nanofluid analysis in a flexible tube with ciliated walls. Eur Phys J Plus 129(8):1–10
38.
Zurück zum Zitat Motsa SS, Sibanda P, Marewo GT (2012) On a new analytical method for flow between two inclined walls. Numer Algorithms 61:499–514MathSciNetCrossRefMATH Motsa SS, Sibanda P, Marewo GT (2012) On a new analytical method for flow between two inclined walls. Numer Algorithms 61:499–514MathSciNetCrossRefMATH
39.
Zurück zum Zitat Turkyilmazoglu M (2014) Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput Fluids 100:196–203MathSciNetCrossRef Turkyilmazoglu M (2014) Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput Fluids 100:196–203MathSciNetCrossRef
Metadaten
Titel
Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study
verfasst von
Umar Khan
Naveed Ahmed
Syed Tauseef Mohyud-Din
Publikationsdatum
03.09.2015
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 1/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-2035-4

Weitere Artikel der Ausgabe 1/2017

Neural Computing and Applications 1/2017 Zur Ausgabe

Premium Partner