Skip to main content

2023 | OriginalPaper | Buchkapitel

HetBiSyn: Predicting Anticancer Synergistic Drug Combinations Featuring Bi-perspective Drug Embedding with Heterogeneous Data

verfasst von : Yulong Li, Hongming Zhu, Xiaowen Wang, Qin Liu

Erschienen in: Bioinformatics Research and Applications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synergistic drug combination is a promising solution to cancer treatment. Since the combinatorial space of drug combinations is too vast to be traversed through experiments, computational methods based on deep learning have shown huge potential in identifying novel synergistic drug combinations. Meanwhile, the feature construction of drugs has been viewed as a crucial task within drug synergy prediction. Recent studies shed light on the use of heterogeneous data, while most studies make independent use of relational data of drug-related biomedical interactions and structural data of drug molecule, thus ignoring the intrinsical association between the two perspectives. In this study, we propose a novel deep learning method termed HetBiSyn for drug combination synergy prediction. HetBiSyn innovatively models the drug-related interactions between biomedical entities and the structure of drug molecules into different heterogeneous graphs, and designs a self-supervised learning framework to obtain a unified drug embedding that simultaneously contains information from both perspectives. In details, two separate heterogeneous graph attention networks are adopted for the two types of graph, whose outputs are utilized to form a contrastive learning task for drug embedding that is enhanced by hard negative mining. We also obtain cell line features by exploiting gene expression profiles. Finally HetBiSyn uses a DNN with batch normalization to predict the synergy score of a combination of two drugs on a specific cell line. The experiment results show that our model outperforms other state-of-art DL and ML methods on the same synergy prediction task. The ablation study also demonstrates that our drug embeddings with bi-perspective information learned through the end-to-end process is significantly informative, which is eventually helpful to predict the synergy scores of drug combinations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mokhtari, R.B., Homayouni, T.S., Baluch, N., et al.: Combination therapy in combating cancer. Oncotarget 8(23), 38022 (2017)CrossRefPubMedCentral Mokhtari, R.B., Homayouni, T.S., Baluch, N., et al.: Combination therapy in combating cancer. Oncotarget 8(23), 38022 (2017)CrossRefPubMedCentral
3.
Zurück zum Zitat Liu, J., Gefen, O., Ronin, I., et al.: Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367(6474), 200–4 (2020)CrossRefPubMed Liu, J., Gefen, O., Ronin, I., et al.: Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367(6474), 200–4 (2020)CrossRefPubMed
4.
Zurück zum Zitat Kruijtzer, C., Beijnen, J., Rosing, H., et al.: Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20(13), 2943–2950 (2002) Kruijtzer, C., Beijnen, J., Rosing, H., et al.: Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20(13), 2943–2950 (2002)
5.
Zurück zum Zitat Preuer, K., Lewis, R.P., Hochreiter, S., Bender, A., Bulusu, K.C., Klambauer, G.: DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34(9), 1538–1546 (2018)CrossRefPubMed Preuer, K., Lewis, R.P., Hochreiter, S., Bender, A., Bulusu, K.C., Klambauer, G.: DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34(9), 1538–1546 (2018)CrossRefPubMed
6.
Zurück zum Zitat Lehár, J., Krueger, A.S., Avery, W., et al.: Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27(7), 659–666 (2009) Lehár, J., Krueger, A.S., Avery, W., et al.: Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27(7), 659–666 (2009)
7.
Zurück zum Zitat Macarron, R., Banks, M.N., Bojanic, D., et al.: Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188–95 (2011)CrossRefPubMed Macarron, R., Banks, M.N., Bojanic, D., et al.: Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188–95 (2011)CrossRefPubMed
8.
Zurück zum Zitat Li, X., Yingjie, X., Cui, H., et al.: Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med. 83, 35–43 (2017)CrossRefPubMed Li, X., Yingjie, X., Cui, H., et al.: Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med. 83, 35–43 (2017)CrossRefPubMed
9.
Zurück zum Zitat Li, H., Li, T., Quang, D., et al.: Network propagation predicts drug synergy in cancers. Cancer Res. 78(18), 5446–57 (2018)CrossRefPubMed Li, H., Li, T., Quang, D., et al.: Network propagation predicts drug synergy in cancers. Cancer Res. 78(18), 5446–57 (2018)CrossRefPubMed
10.
Zurück zum Zitat Low, Y.S., Daugherty, A.C., Schroeder, E.A., et al.: Synergistic drug combinations from electronic health records and gene expression. J. Am. Med. Inform. Assoc. 24(3), 565–76 (2017)CrossRefPubMed Low, Y.S., Daugherty, A.C., Schroeder, E.A., et al.: Synergistic drug combinations from electronic health records and gene expression. J. Am. Med. Inform. Assoc. 24(3), 565–76 (2017)CrossRefPubMed
11.
Zurück zum Zitat Jeon, M., Kim, S., Park, S., et al.: In silico drug combination discovery for personalized cancer therapy. BMC Syst. Biol. 12(2), 59–67 (2018) Jeon, M., Kim, S., Park, S., et al.: In silico drug combination discovery for personalized cancer therapy. BMC Syst. Biol. 12(2), 59–67 (2018)
12.
Zurück zum Zitat Celebi, R., Bear Don’t Walk, O., Movva, R., et al.: In-silico prediction of synergistic anti-cancer drug combinations using multi-omics data. Sci. Rep. 9(1), 1–10 (2019) Celebi, R., Bear Don’t Walk, O., Movva, R., et al.: In-silico prediction of synergistic anti-cancer drug combinations using multi-omics data. Sci. Rep. 9(1), 1–10 (2019)
13.
Zurück zum Zitat O’Neil, J., Benita, Y., Feldman, I., et al.: An unbiased oncology compound screen to identify novel combination strategies. Mol. Cancer Ther. 15(6), 1155–62 (2016)CrossRefPubMed O’Neil, J., Benita, Y., Feldman, I., et al.: An unbiased oncology compound screen to identify novel combination strategies. Mol. Cancer Ther. 15(6), 1155–62 (2016)CrossRefPubMed
14.
Zurück zum Zitat Xia, F., Shukla, M., Brettin, T., et al.: Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinf. 19(18), 71–9 (2018) Xia, F., Shukla, M., Brettin, T., et al.: Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinf. 19(18), 71–9 (2018)
15.
Zurück zum Zitat Ding, P., Yin, R., Luo, J., et al.: Ensemble prediction of synergistic drug combinations incorporating biological, chemical, pharmacological, and network knowledge. IEEE J. Biomed. Health Inform. 23(3), 1336–45 (2019)CrossRefPubMed Ding, P., Yin, R., Luo, J., et al.: Ensemble prediction of synergistic drug combinations incorporating biological, chemical, pharmacological, and network knowledge. IEEE J. Biomed. Health Inform. 23(3), 1336–45 (2019)CrossRefPubMed
16.
Zurück zum Zitat Singh, H., Rana, P.S., Singh, U.: Prediction of drug synergy score using ensemble based differential evolution. IET Syst. Biol. 13(1), 24–9 (2019)CrossRefPubMedPubMedCentral Singh, H., Rana, P.S., Singh, U.: Prediction of drug synergy score using ensemble based differential evolution. IET Syst. Biol. 13(1), 24–9 (2019)CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kim, Y., Zheng, S., Tang, J., et al.: Anticancer drug synergy prediction in understudied tissues using transfer learning. J. Am. Med. Inform. Assoc. 28(1), 42–51 (2021)CrossRefPubMed Kim, Y., Zheng, S., Tang, J., et al.: Anticancer drug synergy prediction in understudied tissues using transfer learning. J. Am. Med. Inform. Assoc. 28(1), 42–51 (2021)CrossRefPubMed
18.
Zurück zum Zitat Sun, Z., Huang, S., Jiang, P., et al.: DTF: deep tensor factorization for predicting anticancer drug synergy. Bioinformatics 36(16), 4483–9 (2020)CrossRefPubMed Sun, Z., Huang, S., Jiang, P., et al.: DTF: deep tensor factorization for predicting anticancer drug synergy. Bioinformatics 36(16), 4483–9 (2020)CrossRefPubMed
19.
Zurück zum Zitat Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010)
21.
23.
Zurück zum Zitat Yang, J., Xu, Z., Wu, W., et al.: GraphSynergy: a network-inspired deep learning model for anticancer drug combination prediction. J. Am. Med. Inform. Assoc. 28(11), 2336–2345 (2021)CrossRefPubMedPubMedCentral Yang, J., Xu, Z., Wu, W., et al.: GraphSynergy: a network-inspired deep learning model for anticancer drug combination prediction. J. Am. Med. Inform. Assoc. 28(11), 2336–2345 (2021)CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Hochreiter, S., Clevert, D.-A., Obermayer, K.: A new summarization method for Affymetrix probe level data. Bioinformatics 22(8), 943–9 (2006)CrossRefPubMed Hochreiter, S., Clevert, D.-A., Obermayer, K.: A new summarization method for Affymetrix probe level data. Bioinformatics 22(8), 943–9 (2006)CrossRefPubMed
26.
Zurück zum Zitat Wan, F., Hong, L., Xiao, A., et al.: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics 35(1), 104–111 (2019)CrossRefPubMed Wan, F., Hong, L., Xiao, A., et al.: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics 35(1), 104–111 (2019)CrossRefPubMed
27.
Zurück zum Zitat Chuang, K.V., Keiser, M.J.: Comment on ‘predicting reaction performance in C-N cross-coupling using machine learning.’ Science 362(6416) (2018). American Association for the Advancement of Science (AAAS) Chuang, K.V., Keiser, M.J.: Comment on ‘predicting reaction performance in C-N cross-coupling using machine learning.’ Science 362(6416) (2018). American Association for the Advancement of Science (AAAS)
28.
Zurück zum Zitat Fang, Y., et al.: Molecular contrastive learning with chemical element knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence. Molecular Contrastive Learning With Chemical Element Knowledge Graph. Proceedings of the AAAI Conference on Artificial Intelligence (2022) Fang, Y., et al.: Molecular contrastive learning with chemical element knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence. Molecular Contrastive Learning With Chemical Element Knowledge Graph. Proceedings of the AAAI Conference on Artificial Intelligence (2022)
29.
Zurück zum Zitat Wang, X., Ji, H., Shi, C., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference, WWW 2019, pp. 2022–32. Association for Computing Machinery, New York (2019) Wang, X., Ji, H., Shi, C., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference, WWW 2019, pp. 2022–32. Association for Computing Machinery, New York (2019)
30.
Zurück zum Zitat Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Series B Stat. Methodol. 67(2), 301–20 (2005)CrossRef Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Series B Stat. Methodol. 67(2), 301–20 (2005)CrossRef
31.
Zurück zum Zitat Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, vol. 9, pp. 155–161 (1997) Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, vol. 9, pp. 155–161 (1997)
32.
33.
Zurück zum Zitat Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. Association for Computing Machinery (ACM), New York, NY, United States (2016) Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. Association for Computing Machinery (ACM), New York, NY, United States (2016)
36.
Zurück zum Zitat Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017) Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)
37.
Zurück zum Zitat Wang, M., Zheng, D., Ye, Z., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315 Wang, M., Zheng, D., Ye, Z., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:​1909.​01315
Metadaten
Titel
HetBiSyn: Predicting Anticancer Synergistic Drug Combinations Featuring Bi-perspective Drug Embedding with Heterogeneous Data
verfasst von
Yulong Li
Hongming Zhu
Xiaowen Wang
Qin Liu
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-7074-2_37

Premium Partner