Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

11.04.2020

Hexagonal Ring Shaped Dual Band Antenna Using Staircase Fractal Geometry For Wireless Applications

verfasst von: Navjot Kaur, Jagtar Singh, Mahendra Kumar

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A design of hexagonal ring-shaped antenna along with staircase fractal geometry for different wideband wireless applications presented in this paper. Space-filling property of fractal has been used to design the proposed antenna with 50 Ω transmission line feed for improved impedance matching and wider bandwidth. The overall dimension of the designed antenna is 3670.4 mm3, FR4 glass epoxy material is used as a substrate with a thickness 1.6 mm and dielectric constant of value 4.4. The antenna adorns the impedance bandwidth (S11 < − 10 dB) of 7.74 GHz (1.86–9.60 GHz) with a maximum gain of 6.99 dB. Various performance parameters of the proposed antenna such as gain, radiation efficiency, and radiation pattern are observed and all these are in the acceptable range for different wireless standards. The design of the proposed optimized antenna is physically fabricated and tested for the justification/comparison of simulated and experimental results and both are found close to each other.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anguera, J., Andujar, A., Huynh, M. C., Orlenius, C., Picher, C., & Puente, C. (2013). Advances in antenna technology for wireless handheld devices. International Journal of Antennas and Propagation,83(64), 1–25.CrossRef Anguera, J., Andujar, A., Huynh, M. C., Orlenius, C., Picher, C., & Puente, C. (2013). Advances in antenna technology for wireless handheld devices. International Journal of Antennas and Propagation,83(64), 1–25.CrossRef
2.
Zurück zum Zitat Li, L., Zhang, X., Yin, X., & Zhou, L. (2016). Compact triple-band printed monopole antenna for WLAN/WiMAX applications. IEEE Antennas Wireless Propagation Letter,15, 1853–1855.CrossRef Li, L., Zhang, X., Yin, X., & Zhou, L. (2016). Compact triple-band printed monopole antenna for WLAN/WiMAX applications. IEEE Antennas Wireless Propagation Letter,15, 1853–1855.CrossRef
3.
Zurück zum Zitat Abutarboush, H. F., Nasif, H., Nilavalan, R., & Cheung, W. (2012). Multiband and wideband monopole antenna for GSM900 and other wireless applications. IEEE Antennas Wireless Propagation Letter,11, 539–542.CrossRef Abutarboush, H. F., Nasif, H., Nilavalan, R., & Cheung, W. (2012). Multiband and wideband monopole antenna for GSM900 and other wireless applications. IEEE Antennas Wireless Propagation Letter,11, 539–542.CrossRef
4.
Zurück zum Zitat Pei, J., Wang, A. G., Gao, S., & Leng, W. (2011). Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications. IEEE Antennas Wireless Propagation Letter,10, 98–301. Pei, J., Wang, A. G., Gao, S., & Leng, W. (2011). Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications. IEEE Antennas Wireless Propagation Letter,10, 98–301.
5.
Zurück zum Zitat Augustin, G., Bybi, P. C., Sarin, V. P., Mohanan, P., Aanandan, C. K., & Vasudevan, K. (2008). A compact dual-band planar antenna for DCS-1900/PCS/PHS, WCDMA/IMT-2000, and WLAN applications. IEEE Antennas Wireless Propagation Letter,7, 108–111.CrossRef Augustin, G., Bybi, P. C., Sarin, V. P., Mohanan, P., Aanandan, C. K., & Vasudevan, K. (2008). A compact dual-band planar antenna for DCS-1900/PCS/PHS, WCDMA/IMT-2000, and WLAN applications. IEEE Antennas Wireless Propagation Letter,7, 108–111.CrossRef
6.
Zurück zum Zitat Liu, W. X., Yin, Y. Z., & Xu, W. L. (2012). Compact self similar triple band antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letter,54(4), 1084–1087.CrossRef Liu, W. X., Yin, Y. Z., & Xu, W. L. (2012). Compact self similar triple band antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letter,54(4), 1084–1087.CrossRef
7.
Zurück zum Zitat Bhatia, S. S., Sahni, S., & Rana, S. B. (2018). A novel design of compact monopole antenna with defected ground plane for wideband applications. Progress In Electromagnetics Research M,70, 21–31. Bhatia, S. S., Sahni, S., & Rana, S. B. (2018). A novel design of compact monopole antenna with defected ground plane for wideband applications. Progress In Electromagnetics Research M,70, 21–31.
8.
Zurück zum Zitat Gupta, M., & Mathur, V. (2017). Wheel shaped modified fractal antenna realization for wireless communications. International Journal of Electronics and Communications (AEU),79, 257–266.CrossRef Gupta, M., & Mathur, V. (2017). Wheel shaped modified fractal antenna realization for wireless communications. International Journal of Electronics and Communications (AEU),79, 257–266.CrossRef
9.
Zurück zum Zitat Wrener, D. H., & Gangualy, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine,45(1), 35–57. Wrener, D. H., & Gangualy, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine,45(1), 35–57.
10.
Zurück zum Zitat Rajeshkumar, V., & Raghavan, S. (2014). Trapezodial ring quad band fractal antenna for WLAN/WIMAX applications. Microwave and Optical Technology Letter,56(11), 2545–2548.CrossRef Rajeshkumar, V., & Raghavan, S. (2014). Trapezodial ring quad band fractal antenna for WLAN/WIMAX applications. Microwave and Optical Technology Letter,56(11), 2545–2548.CrossRef
11.
Zurück zum Zitat Sharma, N., & Bhatia, S. S. (2018). Split ring resonator based multiband hybrid fractal antennas for wireless applications. International Journal of Electronics and Communications (AEU),93, 39–52.CrossRef Sharma, N., & Bhatia, S. S. (2018). Split ring resonator based multiband hybrid fractal antennas for wireless applications. International Journal of Electronics and Communications (AEU),93, 39–52.CrossRef
12.
Zurück zum Zitat Borja, C., & Romeu, J. (2003). On the behavior of Koch island fractal boundary microstrip patch antenna. IEEE Transactions on Antennas Propagation,51, 1281–1291.CrossRef Borja, C., & Romeu, J. (2003). On the behavior of Koch island fractal boundary microstrip patch antenna. IEEE Transactions on Antennas Propagation,51, 1281–1291.CrossRef
13.
Zurück zum Zitat Gianvittorio, J. P., & Samii, Y. R. (2002). Fractal antennas: A novel antenna miniaturization technique and applications. IEEE Antennas Propagation Magazine,44, 20–36.CrossRef Gianvittorio, J. P., & Samii, Y. R. (2002). Fractal antennas: A novel antenna miniaturization technique and applications. IEEE Antennas Propagation Magazine,44, 20–36.CrossRef
14.
Zurück zum Zitat Hwang, K. C. (2007). A modified Sierpinski fractal antenna for multiband application. IEEE Antennas Wireless Propagation Letter,6, 357–360.CrossRef Hwang, K. C. (2007). A modified Sierpinski fractal antenna for multiband application. IEEE Antennas Wireless Propagation Letter,6, 357–360.CrossRef
15.
Zurück zum Zitat Sharma, N., Sharma, V., & Bhatia, S. S. (2018). A novel hybrid fractal antenna for wireless applications. Progress In Electromagnetics Research M,73, 25–35. Sharma, N., Sharma, V., & Bhatia, S. S. (2018). A novel hybrid fractal antenna for wireless applications. Progress In Electromagnetics Research M,73, 25–35.
17.
Zurück zum Zitat Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications,99, 14–24.CrossRef Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications,99, 14–24.CrossRef
18.
Zurück zum Zitat Kaur, M., & Sivia, J. S. (2019). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. The International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.22000.CrossRef Kaur, M., & Sivia, J. S. (2019). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. The International Journal of RF and Microwave Computer-Aided Engineering. https://​doi.​org/​10.​1002/​mmce.​22000.CrossRef
19.
Zurück zum Zitat Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using Meander and Minkowski curves for wireless applications. Wireless Personal Communications,109, 1471–1490.CrossRef Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using Meander and Minkowski curves for wireless applications. Wireless Personal Communications,109, 1471–1490.CrossRef
20.
Zurück zum Zitat Bangi, I. S., & Sivia, J. S. (2019). Moore, Minkowski and koch curves based hybrid fractal antenna for multiband applications. Wireless PersCommun,108, 2435–2448.CrossRef Bangi, I. S., & Sivia, J. S. (2019). Moore, Minkowski and koch curves based hybrid fractal antenna for multiband applications. Wireless PersCommun,108, 2435–2448.CrossRef
21.
Zurück zum Zitat Sidhu, A. K., & Sivia, J. S. (2018). A novel design of wideband Koch like sided Sierpinski square carpet multifractal antenna. Applied Computational Electromagnetics Society Journal,33(8), 873–879. Sidhu, A. K., & Sivia, J. S. (2018). A novel design of wideband Koch like sided Sierpinski square carpet multifractal antenna. Applied Computational Electromagnetics Society Journal,33(8), 873–879.
22.
Zurück zum Zitat Bangi, I. S., & Sivia, J. S. (2018). Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications. AEU-International Journal of Electronics and Communications,85, 159–168.CrossRef Bangi, I. S., & Sivia, J. S. (2018). Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications. AEU-International Journal of Electronics and Communications,85, 159–168.CrossRef
23.
Zurück zum Zitat Kaur, K., & Sivia, J. S. (2017). A compact hybrid multiband antenna for wireless applications. International Journal of Wireless personal communication,97(4), 5917–5927.CrossRef Kaur, K., & Sivia, J. S. (2017). A compact hybrid multiband antenna for wireless applications. International Journal of Wireless personal communication,97(4), 5917–5927.CrossRef
24.
Zurück zum Zitat Sivia, J. S., Kaur, G., & Sarao, A. K. (2017). A Modified Sierpinski carpet fractal antenna for multiband applications. International journal of Wireless personal communication,93, 4269–4279.CrossRef Sivia, J. S., Kaur, G., & Sarao, A. K. (2017). A Modified Sierpinski carpet fractal antenna for multiband applications. International journal of Wireless personal communication,93, 4269–4279.CrossRef
25.
Zurück zum Zitat Bhatia, S. S., Sivia, J. S., & Sharma, N. (2018). An optimal design of fractal antenna with modified ground structure for wideband applications. Wireless Personal Communication,103(3), 1977–1991.CrossRef Bhatia, S. S., Sivia, J. S., & Sharma, N. (2018). An optimal design of fractal antenna with modified ground structure for wideband applications. Wireless Personal Communication,103(3), 1977–1991.CrossRef
26.
Zurück zum Zitat Kiran, D. V., Sankaranarayanan, D., & Mukherjee, B. (2017). Compact embedded dual-element rectangular dielectric resonator antenna combining Sierpinski and Minkowski fractals. IEEE Transactions on Components, Packaging and Manufacturing Technology,7(5), 786–791.CrossRef Kiran, D. V., Sankaranarayanan, D., & Mukherjee, B. (2017). Compact embedded dual-element rectangular dielectric resonator antenna combining Sierpinski and Minkowski fractals. IEEE Transactions on Components, Packaging and Manufacturing Technology,7(5), 786–791.CrossRef
27.
Zurück zum Zitat Sankaranarayanan, D., Venkatakiran, D., & Mukherjee, B. (2016). A novel compact fractal ring based cylindrical dielectric resonator antenna for ultra-wideband applications. Progress In Electromagnetics Research C,67, 71–83.CrossRef Sankaranarayanan, D., Venkatakiran, D., & Mukherjee, B. (2016). A novel compact fractal ring based cylindrical dielectric resonator antenna for ultra-wideband applications. Progress In Electromagnetics Research C,67, 71–83.CrossRef
28.
Zurück zum Zitat Gupta, S., Kshirsagar, P., & Mukherjee, B. (2018). Sierpinski fractal inspired inverted pyramidal DRA for wide band applications. Electromagnetics, Taylor & Francis,38(2), 103–112. Gupta, S., Kshirsagar, P., & Mukherjee, B. (2018). Sierpinski fractal inspired inverted pyramidal DRA for wide band applications. Electromagnetics, Taylor & Francis,38(2), 103–112.
29.
Zurück zum Zitat Mitra, D., Das, D., & BhadraChaudhuri, S. R. (2012). Bandwidth enhancement of microstrip line and CPW- fed asymmetrical slot antennas. Progress In Electromagnetic Research,32, 69–79.CrossRef Mitra, D., Das, D., & BhadraChaudhuri, S. R. (2012). Bandwidth enhancement of microstrip line and CPW- fed asymmetrical slot antennas. Progress In Electromagnetic Research,32, 69–79.CrossRef
30.
Zurück zum Zitat Ray, K. P., Thakur, S. S., & Deshmukh, R. A. (2012). Wideband L-shaped printed monopole antenna. International Journal of Electronics and Communications (AEU),66, 693–696.CrossRef Ray, K. P., Thakur, S. S., & Deshmukh, R. A. (2012). Wideband L-shaped printed monopole antenna. International Journal of Electronics and Communications (AEU),66, 693–696.CrossRef
31.
Zurück zum Zitat Omar, S. A., Iqbal, A., Saraereh, O. A., & Basir, A. (2017). An array of M—shaped Vivaldi antennas for UWB applications. Progress In Electromagnetics Research,68, 67–72. Omar, S. A., Iqbal, A., Saraereh, O. A., & Basir, A. (2017). An array of M—shaped Vivaldi antennas for UWB applications. Progress In Electromagnetics Research,68, 67–72.
Metadaten
Titel
Hexagonal Ring Shaped Dual Band Antenna Using Staircase Fractal Geometry For Wireless Applications
verfasst von
Navjot Kaur
Jagtar Singh
Mahendra Kumar
Publikationsdatum
11.04.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07307-0

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

Neuer Inhalt