Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2015

01.04.2015

High-Pressure Double Torsion as a Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling

verfasst von: Mohammad Jahedi, Marko Knezevic, Mohammad Hossein Paydar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, a severe plastic deformation process of high-pressure torsion (HPT) has been modified. The new process is called high-pressure double torsion (HPDT) as both anvils of the conventional HPT process rotate in opposite directions. We manufactured sets of aluminum and pure copper samples using both the HPT process and the newly developed HPDT process to compare between microstructures and microhardness values. Our investigations showed that the copper samples processed by HPDT exhibited larger gradients in microstructure and higher values of hardness. Subsequently, we carried out a set of finite element simulations in ABAQUS/explicit to better understand the differences between the HPT process and the HPDT process. A comparison of the strain distributions of the HPT and HPDT samples revealed a decreasing trend in strain values as the radius increased at the middle surface of the samples. Analysis of the equivalent stress values revealed that stress values for the HPDT samples were higher than those of the HPT samples. Finally, the comparison of the max principal stress values indicated that in the HPDT sample, the extent of the compressive stresses was larger than those in the HPT sample.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53(6), p 893–979CrossRef A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53(6), p 893–979CrossRef
2.
Zurück zum Zitat R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRef R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRef
3.
Zurück zum Zitat A. Zhilyaev et al., Experimental Parameters Influencing Grain Refinement and Microstructural Evolution During High-Pressure Torsion, Acta Mater., 2003, 51(3), p 753–765CrossRef A. Zhilyaev et al., Experimental Parameters Influencing Grain Refinement and Microstructural Evolution During High-Pressure Torsion, Acta Mater., 2003, 51(3), p 753–765CrossRef
4.
Zurück zum Zitat A. Zhilyaev, T. McNelley, and T. Langdon, Evolution of Microstructure and Microtexture in FCC Metals During High-Pressure Torsion, J. Mater. Sci., 2007, 42(5), p 1517–1528CrossRef A. Zhilyaev, T. McNelley, and T. Langdon, Evolution of Microstructure and Microtexture in FCC Metals During High-Pressure Torsion, J. Mater. Sci., 2007, 42(5), p 1517–1528CrossRef
5.
Zurück zum Zitat C. Xu, Z. Horita, and T.G. Langdon, Evaluating the Influence of Pressure and Torsional Strain on Processing by High-Pressure Torsion, J. Mater. Sci., 2008, 43(23–24), p 7286–7292CrossRef C. Xu, Z. Horita, and T.G. Langdon, Evaluating the Influence of Pressure and Torsional Strain on Processing by High-Pressure Torsion, J. Mater. Sci., 2008, 43(23–24), p 7286–7292CrossRef
6.
Zurück zum Zitat S.C. Yoon, Z. Horita, and H.S. Kim, Finite Element Analysis of Plastic Deformation Behavior During High Pressure Torsion Processing, J. Mater. Process. Technol., 2008, 201(1), p 32–36CrossRef S.C. Yoon, Z. Horita, and H.S. Kim, Finite Element Analysis of Plastic Deformation Behavior During High Pressure Torsion Processing, J. Mater. Process. Technol., 2008, 201(1), p 32–36CrossRef
7.
Zurück zum Zitat M. Kawasaki, R.B. Figueiredo, and T.G. Langdon, An Investigation of Hardness Homogeneity Throughout Disks Processed by High-Pressure Torsion, Acta Mater., 2011, 59(1), p 308–316CrossRef M. Kawasaki, R.B. Figueiredo, and T.G. Langdon, An Investigation of Hardness Homogeneity Throughout Disks Processed by High-Pressure Torsion, Acta Mater., 2011, 59(1), p 308–316CrossRef
8.
Zurück zum Zitat Y. Cao et al., A Visualization of Shear Strain in Processing by High-Pressure Torsion, J. Mater. Sci., 2010, 45(3), p 765–770CrossRef Y. Cao et al., A Visualization of Shear Strain in Processing by High-Pressure Torsion, J. Mater. Sci., 2010, 45(3), p 765–770CrossRef
9.
Zurück zum Zitat Z. Horita and T.G. Langdon, Microstructures and Microhardness of an Aluminum Alloy and Pure Copper After Processing by High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 410, p 422–425CrossRef Z. Horita and T.G. Langdon, Microstructures and Microhardness of an Aluminum Alloy and Pure Copper After Processing by High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 410, p 422–425CrossRef
10.
Zurück zum Zitat F. Wetscher, A. Vorhauer, and R. Pippan, Strain Hardening During High Pressure Torsion Deformation, Mater. Sci. Eng. A, 2005, 410, p 213–216CrossRef F. Wetscher, A. Vorhauer, and R. Pippan, Strain Hardening During High Pressure Torsion Deformation, Mater. Sci. Eng. A, 2005, 410, p 213–216CrossRef
11.
Zurück zum Zitat H.S. Kim et al., Deformation Behavior of Copper During a High Pressure Torsion Process, J. Mater. Process. Technol., 2003, 142(2), p 334–337CrossRef H.S. Kim et al., Deformation Behavior of Copper During a High Pressure Torsion Process, J. Mater. Process. Technol., 2003, 142(2), p 334–337CrossRef
12.
Zurück zum Zitat A. Zhilyaev et al., Influence of the High Pressure Torsion Die Geometry on the Allotropic Phase Transformations in Pure Zr, Mater. Sci. Eng. A, 2010, 527(16), p 3918–3928CrossRef A. Zhilyaev et al., Influence of the High Pressure Torsion Die Geometry on the Allotropic Phase Transformations in Pure Zr, Mater. Sci. Eng. A, 2010, 527(16), p 3918–3928CrossRef
13.
Zurück zum Zitat R. Lapovok et al., Severe plastic Deformation Processes for Thin Samples, J. Mater. Sci., 2010, 45(17), p 4554–4560CrossRef R. Lapovok et al., Severe plastic Deformation Processes for Thin Samples, J. Mater. Sci., 2010, 45(17), p 4554–4560CrossRef
14.
Zurück zum Zitat O. Bouaziz, Y. Estrin, and H.S. Kim, A New Technique for Severe Plastic Deformation: The Cone-Cone Method, Adv. Eng. Mater., 2009, 11(12), p 982–985 O. Bouaziz, Y. Estrin, and H.S. Kim, A New Technique for Severe Plastic Deformation: The Cone-Cone Method, Adv. Eng. Mater., 2009, 11(12), p 982–985
15.
Zurück zum Zitat K. Edalati and Z. Horita, Continuous High-Pressure Torsion, J. Mater. Sci., 2010, 45(17), p 4578–4582CrossRef K. Edalati and Z. Horita, Continuous High-Pressure Torsion, J. Mater. Sci., 2010, 45(17), p 4578–4582CrossRef
16.
Zurück zum Zitat M. Jahedi et al., Texture Evolution and Enhanced Grain Refinement Under High-Pressure-Double-Torsion, Mater. Sci. Eng. A, 2014, 611, p 29–36CrossRef M. Jahedi et al., Texture Evolution and Enhanced Grain Refinement Under High-Pressure-Double-Torsion, Mater. Sci. Eng. A, 2014, 611, p 29–36CrossRef
17.
Zurück zum Zitat M. Knezevic et al., Modeling Bending of α-Titanium with Embedded Polycrystal Plasticity in Implicit Finite Elements, Mater. Sci. Eng. A, 2013, 564, p 116–126CrossRef M. Knezevic et al., Modeling Bending of α-Titanium with Embedded Polycrystal Plasticity in Implicit Finite Elements, Mater. Sci. Eng. A, 2013, 564, p 116–126CrossRef
18.
Zurück zum Zitat M. Knezevic, H.F. Al-Harbi, and S.R. Kalidindi, Crystal Plasticity Simulations Using Discrete Fourier Transforms, Acta Mater., 2009, 57(6), p 1777–1784CrossRef M. Knezevic, H.F. Al-Harbi, and S.R. Kalidindi, Crystal Plasticity Simulations Using Discrete Fourier Transforms, Acta Mater., 2009, 57(6), p 1777–1784CrossRef
19.
Zurück zum Zitat M. Knezevic, S.R. Kalidindi, and D. Fullwood, Computationally Efficient Database and Spectral Interpolation for Fully Plastic Taylor-Type Crystal Plasticity Calculations of Face-Centered Cubic Polycrystals, Int. J. Plast., 2008, 24(7), p 1264–1276CrossRef M. Knezevic, S.R. Kalidindi, and D. Fullwood, Computationally Efficient Database and Spectral Interpolation for Fully Plastic Taylor-Type Crystal Plasticity Calculations of Face-Centered Cubic Polycrystals, Int. J. Plast., 2008, 24(7), p 1264–1276CrossRef
20.
Zurück zum Zitat M. Ardeljan, I.J. Beyerlein, and M. Knezevic, A Dislocation Density Based Crystal Plasticity Finite Element Model: Application to a Two-Phase Polycrystalline HCP/BCC Composites, J. Mech. Phys. Solids, 2014, 66, p 16–31CrossRef M. Ardeljan, I.J. Beyerlein, and M. Knezevic, A Dislocation Density Based Crystal Plasticity Finite Element Model: Application to a Two-Phase Polycrystalline HCP/BCC Composites, J. Mech. Phys. Solids, 2014, 66, p 16–31CrossRef
21.
Zurück zum Zitat M. Knezevic et al., Texture Evolution in Two-Phase Zr/Nb Lamellar Composites During Accumulative Roll Bonding, Int. J. Plast., 2014, 57, p 16–28CrossRef M. Knezevic et al., Texture Evolution in Two-Phase Zr/Nb Lamellar Composites During Accumulative Roll Bonding, Int. J. Plast., 2014, 57, p 16–28CrossRef
22.
Zurück zum Zitat ABAQUS, Reference Manuals, Dassault Systèemes, Providence, 2013 ABAQUS, Reference Manuals, Dassault Systèemes, Providence, 2013
23.
Zurück zum Zitat V.I. Levitas, High-Pressure Mechanochemistry: Conceptual Multiscale Theory and Interpretation of Experiments, Phys. Rev. B, 2004, 70(18), p 184118CrossRef V.I. Levitas, High-Pressure Mechanochemistry: Conceptual Multiscale Theory and Interpretation of Experiments, Phys. Rev. B, 2004, 70(18), p 184118CrossRef
24.
Zurück zum Zitat H.S. Kim, Finite Element Analysis of High Pressure Torsion Processing, J. Mater. Process. Technol., 2001, 113(1), p 617–621CrossRef H.S. Kim, Finite Element Analysis of High Pressure Torsion Processing, J. Mater. Process. Technol., 2001, 113(1), p 617–621CrossRef
25.
Zurück zum Zitat V.I. Levitas and O.M. Zarechnyy, Numerical Study of Stress and Plastic Strain Evolution Under Compression and Shear of a Sample in a Rotational Anvil Cell, High Pressure Res., 2010, 30(4), p 653–669CrossRef V.I. Levitas and O.M. Zarechnyy, Numerical Study of Stress and Plastic Strain Evolution Under Compression and Shear of a Sample in a Rotational Anvil Cell, High Pressure Res., 2010, 30(4), p 653–669CrossRef
26.
Zurück zum Zitat B. Feng and V.I. Levitas, Coupled Phase Transformations and Plastic Flows Under Torsion at High Pressure in Rotational Diamond Anvil Cell: Effect of Contact Sliding, J. Appl. Phys., 2013, 114(21), p 213514CrossRef B. Feng and V.I. Levitas, Coupled Phase Transformations and Plastic Flows Under Torsion at High Pressure in Rotational Diamond Anvil Cell: Effect of Contact Sliding, J. Appl. Phys., 2013, 114(21), p 213514CrossRef
27.
Zurück zum Zitat R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143CrossRef R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143CrossRef
28.
Zurück zum Zitat N. Bay, Friction Stress and Normal Stress in Bulk Metal-Forming Processes, J. Mech. Work. Technol., 1987, 14(2), p 203–223CrossRef N. Bay, Friction Stress and Normal Stress in Bulk Metal-Forming Processes, J. Mech. Work. Technol., 1987, 14(2), p 203–223CrossRef
29.
Zurück zum Zitat K. Edalati, Z. Horita, and T.G. Langdon, The Significance of Slippage in Processing by High-Pressure Torsion, Scripta Mater., 2009, 60(1), p 9–12CrossRef K. Edalati, Z. Horita, and T.G. Langdon, The Significance of Slippage in Processing by High-Pressure Torsion, Scripta Mater., 2009, 60(1), p 9–12CrossRef
30.
Zurück zum Zitat R.B. Figueiredo et al., Using Finite Element Modeling to Examine the Temperature Distribution in Quasi-constrained High-Pressure Torsion, Acta Mater., 2012, 60(6), p 3190–3198CrossRef R.B. Figueiredo et al., Using Finite Element Modeling to Examine the Temperature Distribution in Quasi-constrained High-Pressure Torsion, Acta Mater., 2012, 60(6), p 3190–3198CrossRef
31.
Zurück zum Zitat R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon, Using Finite Element Modeling to Examine the Flow Processes in Quasi-constrained High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 528(28), p 8198–8204CrossRef R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon, Using Finite Element Modeling to Examine the Flow Processes in Quasi-constrained High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 528(28), p 8198–8204CrossRef
32.
Zurück zum Zitat A. Eivani and A. Karimi, Taheri, An Upper Bound Solution of ECAE Process with Outer Curved Corner, J. Mater. Process. Technol., 2007, 182(1), p 555–563CrossRef A. Eivani and A. Karimi, Taheri, An Upper Bound Solution of ECAE Process with Outer Curved Corner, J. Mater. Process. Technol., 2007, 182(1), p 555–563CrossRef
33.
Zurück zum Zitat B. Mani, M. Jahedi, and M.H. Paydar, A Modification on ECAP Process by Incorporating Torsional Deformation, Mater. Sci. Eng. A, 2011, 528(12), p 4159–4165CrossRef B. Mani, M. Jahedi, and M.H. Paydar, A Modification on ECAP Process by Incorporating Torsional Deformation, Mater. Sci. Eng. A, 2011, 528(12), p 4159–4165CrossRef
34.
Zurück zum Zitat M. Jahedi and M.H. Paydar, Three-Dimensional Finite Element Analysis of Torsion Extrusion (TE) as an SPD Process, Mater. Sci. Eng. A, 2011, 528(29), p 8742–8749CrossRef M. Jahedi and M.H. Paydar, Three-Dimensional Finite Element Analysis of Torsion Extrusion (TE) as an SPD Process, Mater. Sci. Eng. A, 2011, 528(29), p 8742–8749CrossRef
35.
Zurück zum Zitat N. Pardis and R. Ebrahimi, Different Processing Routes for Deformation Via Simple Shear Extrusion (SSE), Mater. Sci. Eng. A, 2010, 527(23), p 6153–6156CrossRef N. Pardis and R. Ebrahimi, Different Processing Routes for Deformation Via Simple Shear Extrusion (SSE), Mater. Sci. Eng. A, 2010, 527(23), p 6153–6156CrossRef
36.
Zurück zum Zitat H. Jiang et al., Microstructural Evolution, Microhardness and Thermal Stability of HPT-Processed Cu, Mater. Sci. Eng. A, 2000, 290(1), p 128–138CrossRef H. Jiang et al., Microstructural Evolution, Microhardness and Thermal Stability of HPT-Processed Cu, Mater. Sci. Eng. A, 2000, 290(1), p 128–138CrossRef
37.
Zurück zum Zitat K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497(1), p 168–173CrossRef K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497(1), p 168–173CrossRef
38.
Zurück zum Zitat M. Kawasaki et al., The Development of Hardness Homogeneity in Pure Aluminum and Aluminum Alloy Disks Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 529, p 345–351CrossRef M. Kawasaki et al., The Development of Hardness Homogeneity in Pure Aluminum and Aluminum Alloy Disks Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 529, p 345–351CrossRef
39.
Zurück zum Zitat Y. Cao et al., Three-Dimensional Shear-Strain Patterns Induced by High-Pressure Torsion and Their Impact on Hardness Evolution, Acta Mater., 2011, 59(10), p 3903–3914CrossRef Y. Cao et al., Three-Dimensional Shear-Strain Patterns Induced by High-Pressure Torsion and Their Impact on Hardness Evolution, Acta Mater., 2011, 59(10), p 3903–3914CrossRef
40.
Zurück zum Zitat C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scripta Mater., 2004, 51(6), p 509–514CrossRef C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scripta Mater., 2004, 51(6), p 509–514CrossRef
41.
Zurück zum Zitat A. Zhilyaev et al., Orientation Imaging Microscopy of Ultrafine-Grained Nickel, Scripta Mater., 2002, 46(8), p 575–580CrossRef A. Zhilyaev et al., Orientation Imaging Microscopy of Ultrafine-Grained Nickel, Scripta Mater., 2002, 46(8), p 575–580CrossRef
42.
Zurück zum Zitat M. Zehetbauer and R.Z. Valiev, Nanomaterials by Severe Plastic Deformation, Wiley Online Library, Weinham, 2004CrossRef M. Zehetbauer and R.Z. Valiev, Nanomaterials by Severe Plastic Deformation, Wiley Online Library, Weinham, 2004CrossRef
43.
Zurück zum Zitat Z. Horita et al., Observations of Grain Boundary Structure in Submicrometer-Grained Cu and Ni Using High-Resolution Electron Microscopy, J. Mater. Res., 1998, 13(2), p 446–450CrossRef Z. Horita et al., Observations of Grain Boundary Structure in Submicrometer-Grained Cu and Ni Using High-Resolution Electron Microscopy, J. Mater. Res., 1998, 13(2), p 446–450CrossRef
44.
Zurück zum Zitat M. Jahedi and M.H. Paydar, Study on the Feasibility of the Torsion Extrusion (TE) Process as a Severe Plastic Deformation Method for Consolidation of Al Powder, Mater. Sci. Eng. A, 2010, 527(20), p 5273–5279CrossRef M. Jahedi and M.H. Paydar, Study on the Feasibility of the Torsion Extrusion (TE) Process as a Severe Plastic Deformation Method for Consolidation of Al Powder, Mater. Sci. Eng. A, 2010, 527(20), p 5273–5279CrossRef
45.
Zurück zum Zitat A. Nagasekhar et al., Stress and Strain Histories in Equal Channel Angular Extrusion/Pressing, Mater. Sci. Eng. A, 2006, 423(1), p 143–147CrossRef A. Nagasekhar et al., Stress and Strain Histories in Equal Channel Angular Extrusion/Pressing, Mater. Sci. Eng. A, 2006, 423(1), p 143–147CrossRef
Metadaten
Titel
High-Pressure Double Torsion as a Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling
verfasst von
Mohammad Jahedi
Marko Knezevic
Mohammad Hossein Paydar
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1426-0

Weitere Artikel der Ausgabe 4/2015

Journal of Materials Engineering and Performance 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.