Skip to main content
Erschienen in: Polymer Science, Series D 1/2023

01.03.2023

High-Temperature Thermodestruction Analysis of a Polyphenylene-Sulfide-Based Composite by Thermogravimetry

verfasst von: A. V. Kutsenova, E. V. Kalugina, A. V. Samoryadov, V. B. Ivanov

Erschienen in: Polymer Science, Series D | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermodestruction of a polyphenylene-sulfide-based composite at temperatures up to 800°C was studied by dynamic thermogravimetric analysis. Activation energies Еа were determined using a nonlinear regression analysis within the framework of a kinetic model of the process with two noninterrelated noninteracting stages. Estimates of Еа by this and other methods were compared with the value of Еа during destruction in the isothermal regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Rabek, Experimental Methods in Polymer Chemistry (Wiley, New York, 1980). J. Rabek, Experimental Methods in Polymer Chemistry (Wiley, New York, 1980).
2.
Zurück zum Zitat Y. A. Shlyapnikov, S. G. Kiryushkin, and A. P. Maryin, Antioxidative Stabilization of Polymers (Khimiya, Moscow, 1986; CRC Press, London, 1996). Y. A. Shlyapnikov, S. G. Kiryushkin, and A. P. Maryin, Antioxidative Stabilization of Polymers (Khimiya, Moscow, 1986; CRC Press, London, 1996).
3.
Zurück zum Zitat N. Saadatkhan, A. C. Garcia, S. Ackermann, et al., “Experimental methods in chemical engineering: Thermogravimetric–TGA,” Canad. J. Chem. Eng. 98, 34–43 (2020).CrossRef N. Saadatkhan, A. C. Garcia, S. Ackermann, et al., “Experimental methods in chemical engineering: Thermogravimetric–TGA,” Canad. J. Chem. Eng. 98, 34–43 (2020).CrossRef
4.
Zurück zum Zitat A. L. Pomerantsev, A. V. Kutsenova, and O. E. Rodionova, “Kinetic analysis of non-isothermal solid-state reaction: Multi-stage modeling without assumption in reaction mechanism,” Phys. Chem. Chem. Phys. 19, 3606–3615 (2017).CrossRefPubMed A. L. Pomerantsev, A. V. Kutsenova, and O. E. Rodionova, “Kinetic analysis of non-isothermal solid-state reaction: Multi-stage modeling without assumption in reaction mechanism,” Phys. Chem. Chem. Phys. 19, 3606–3615 (2017).CrossRefPubMed
5.
Zurück zum Zitat A. V. Kutsenova, V. B. Ivanov, O. E. Rodionova, et al., “A new approach to analyze the thermal degradation of polycarbonate,” Russ. J. Phys. Chem. B 14, 1042–1048 (2020).CrossRef A. V. Kutsenova, V. B. Ivanov, O. E. Rodionova, et al., “A new approach to analyze the thermal degradation of polycarbonate,” Russ. J. Phys. Chem. B 14, 1042–1048 (2020).CrossRef
6.
Zurück zum Zitat A. S. Rahate, K. R. Nemade, and S. A. Waghuley, “Polyphenylene sulfide (PPS): State of the art and applications,” Rev. Chem. Eng. 29, 471–489 (2013).CrossRef A. S. Rahate, K. R. Nemade, and S. A. Waghuley, “Polyphenylene sulfide (PPS): State of the art and applications,” Rev. Chem. Eng. 29, 471–489 (2013).CrossRef
7.
Zurück zum Zitat F. Iokhenning, “Polyphenylene sulfide: Production, polyphenylene sulfide: Application, and prospects,” Polym. Mater., No. 2, 40–44 (2012). F. Iokhenning, “Polyphenylene sulfide: Production, polyphenylene sulfide: Application, and prospects,” Polym. Mater., No. 2, 40–44 (2012).
8.
Zurück zum Zitat Z. Yu, L. Li, S. Meng, et al., “Effect of TiO2SiO2 nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fiber,” Prog. Nat. Sci.: Mater. Int. 25, 310–315 (2015).CrossRef Z. Yu, L. Li, S. Meng, et al., “Effect of TiO2SiO2 nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fiber,” Prog. Nat. Sci.: Mater. Int. 25, 310–315 (2015).CrossRef
9.
Zurück zum Zitat K. B. Mahat, I. Alarifi, A. Alharbi, et al., “Effects of UV light on the mechanical properties of carbon fiber reinforced PPS thermoplastic composites,” Macromol. Symp. 365, 157–168 (2016).CrossRef K. B. Mahat, I. Alarifi, A. Alharbi, et al., “Effects of UV light on the mechanical properties of carbon fiber reinforced PPS thermoplastic composites,” Macromol. Symp. 365, 157–168 (2016).CrossRef
10.
Zurück zum Zitat V. B. Ivanov, V. V. Bitt, E. V. Solina, et al., “Reversible and irreversible color change during photo and thermal degradation of polyphenylene sulfide composite,” Polymers, No. 11, 1579 (2019).CrossRef V. B. Ivanov, V. V. Bitt, E. V. Solina, et al., “Reversible and irreversible color change during photo and thermal degradation of polyphenylene sulfide composite,” Polymers, No. 11, 1579 (2019).CrossRef
11.
Zurück zum Zitat V. B. Ivanov, E. V. Solina, and A. V. Samoryadov, “The effect of irradiation conditions on photodegradation of impact resistant polyphenylene sulfide-based composite,” Polym. Sci., Ser. D 13, 353–357 (2020). V. B. Ivanov, E. V. Solina, and A. V. Samoryadov, “The effect of irradiation conditions on photodegradation of impact resistant polyphenylene sulfide-based composite,” Polym. Sci., Ser. D 13, 353–357 (2020).
12.
Zurück zum Zitat X. Z. Zhang, K. Zhang, Z. Zhou, et al., “Preparation of radiation-resistant high performance polyphenylene sulfide fiber with improved processing,” Procedia Eng. 27, 1354–1358 (2012).CrossRef X. Z. Zhang, K. Zhang, Z. Zhou, et al., “Preparation of radiation-resistant high performance polyphenylene sulfide fiber with improved processing,” Procedia Eng. 27, 1354–1358 (2012).CrossRef
13.
Zurück zum Zitat X. Yang, L. Duan, and X. Ran, “Effect of polydopamine coating on improving photostability of polyphenylene sulfide fiber,” Polym. Bull. 74, 641–656 (2017).CrossRef X. Yang, L. Duan, and X. Ran, “Effect of polydopamine coating on improving photostability of polyphenylene sulfide fiber,” Polym. Bull. 74, 641–656 (2017).CrossRef
14.
Zurück zum Zitat R. Steffen, M. Meir, J. Rekstad, et al., “Kinetic of degradation induced polymer luminescence: A polyphenylene sulfide/elastomer blend under dry heat exposure,” Polymer 136, 71–83 (2018).CrossRef R. Steffen, M. Meir, J. Rekstad, et al., “Kinetic of degradation induced polymer luminescence: A polyphenylene sulfide/elastomer blend under dry heat exposure,” Polymer 136, 71–83 (2018).CrossRef
15.
Zurück zum Zitat S. Vyazovkin, A. K. Burnham, J. M. Criado, et al., “ICTAC kinetics recommendations for performing kinetic computations on thermal analysis data,” Thermochim. Acta 520, 1–19 (2011).CrossRef S. Vyazovkin, A. K. Burnham, J. M. Criado, et al., “ICTAC kinetics recommendations for performing kinetic computations on thermal analysis data,” Thermochim. Acta 520, 1–19 (2011).CrossRef
16.
Zurück zum Zitat E. V. Bystritskaya, T. V. Monakhova, and V. B. Ivanov, “TGA application for optimizing the accelerated aging conditions on thermal aging of rubber,” Polym. Test. 32, 197–201 (2013).CrossRef E. V. Bystritskaya, T. V. Monakhova, and V. B. Ivanov, “TGA application for optimizing the accelerated aging conditions on thermal aging of rubber,” Polym. Test. 32, 197–201 (2013).CrossRef
17.
Zurück zum Zitat V. B. Ivanov, A. A. Zavodchikova, E. I. Popova, et al., “Accelerated testing of thermo-oxidative degradation of polyvinyl butyral,” Thermochim. Acta 589, 70–75 (2014).CrossRef V. B. Ivanov, A. A. Zavodchikova, E. I. Popova, et al., “Accelerated testing of thermo-oxidative degradation of polyvinyl butyral,” Thermochim. Acta 589, 70–75 (2014).CrossRef
18.
Zurück zum Zitat V. B. Ivanov, E. V. Solina, O. V. Staroverova, et al., “Influence of external condition on the relation between the physical and chemical processes in the thermodegradation of plasticized poly (vinyl chloride),” Russ. J. Phys. Chem. B 11, 978–984 (2017).CrossRef V. B. Ivanov, E. V. Solina, O. V. Staroverova, et al., “Influence of external condition on the relation between the physical and chemical processes in the thermodegradation of plasticized poly (vinyl chloride),” Russ. J. Phys. Chem. B 11, 978–984 (2017).CrossRef
Metadaten
Titel
High-Temperature Thermodestruction Analysis of a Polyphenylene-Sulfide-Based Composite by Thermogravimetry
verfasst von
A. V. Kutsenova
E. V. Kalugina
A. V. Samoryadov
V. B. Ivanov
Publikationsdatum
01.03.2023
Verlag
Pleiades Publishing
Erschienen in
Polymer Science, Series D / Ausgabe 1/2023
Print ISSN: 1995-4212
Elektronische ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223010148

Weitere Artikel der Ausgabe 1/2023

Polymer Science, Series D 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.