Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 7/2018

03.05.2018

High Temperature Uniaxial Compression and Stress–Relaxation Behavior of India-Specific RAFM Steel

verfasst von: Naimish S. Shah, Saurav Sunil, Apu Sarkar

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress–relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress–relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10−3 s−1. The creep properties of the steel at different temperatures were predicted from the stress–relaxation test. The Norton’s stress exponent (n) was found to decrease with the increasing temperature. Using Bird–Mukherjee–Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m ~ 0.06 was observed at 600 °C. The activation volume (V*) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.A.J. Forsik: PhD Thesis, University of Cambridge, 2009. S.A.J. Forsik: PhD Thesis, University of Cambridge, 2009.
2.
Zurück zum Zitat R. L. Klueh, and A.T. Nelson, Journal of Nuclear Materials, 2007. 371(1): p. 37-52.CrossRef R. L. Klueh, and A.T. Nelson, Journal of Nuclear Materials, 2007. 371(1): p. 37-52.CrossRef
3.
Zurück zum Zitat B. K. Choudhary, V. S. Srinivasan and M. D. Mathew, Materials at High Temperatures 2011, vol. 28, pp. 155-161.CrossRef B. K. Choudhary, V. S. Srinivasan and M. D. Mathew, Materials at High Temperatures 2011, vol. 28, pp. 155-161.CrossRef
4.
Zurück zum Zitat B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Möslang and G. R. Odette, Journal of Nuclear Materials 2000, vol. 283, pp. 52-59.CrossRef B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Möslang and G. R. Odette, Journal of Nuclear Materials 2000, vol. 283, pp. 52-59.CrossRef
5.
Zurück zum Zitat A. Hishinuma, ., A. Kohyama, R. L. Klueh, D. S. Gelles, W. Dietz and K. Ehrlich,, Journal of Nuclear Materials, 1998. 258: p. 193-204.CrossRef A. Hishinuma, ., A. Kohyama, R. L. Klueh, D. S. Gelles, W. Dietz and K. Ehrlich,, Journal of Nuclear Materials, 1998. 258: p. 193-204.CrossRef
6.
Zurück zum Zitat Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R. J. Kurtz, R. Lindau, T. Muroga, G. R. Odette, B. Raj, R. E. Stoller, L. Tan, H. Tanigawa, A. A. F. Tavassoli, T. Yamamoto, F. Wan and Y. Wu, Journal of Nuclear Materials, 2013. 442(1): p. S2-S8.CrossRef Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R. J. Kurtz, R. Lindau, T. Muroga, G. R. Odette, B. Raj, R. E. Stoller, L. Tan, H. Tanigawa, A. A. F. Tavassoli, T. Yamamoto, F. Wan and Y. Wu, Journal of Nuclear Materials, 2013. 442(1): p. S2-S8.CrossRef
7.
Zurück zum Zitat K. Laha, S. Saroja, A. Moitra, R. Sandhya, M. D. Mathew, T. Jayakumar and E. Rajendra Kumar, Journal of Nuclear Materials 2013, vol. 439, pp. 41-50.CrossRef K. Laha, S. Saroja, A. Moitra, R. Sandhya, M. D. Mathew, T. Jayakumar and E. Rajendra Kumar, Journal of Nuclear Materials 2013, vol. 439, pp. 41-50.CrossRef
8.
Zurück zum Zitat S. K. Albert, K. Laha, A. K. Bhaduri, T. Jayakumar and E. Rajendrakumar, Fusion Engineering and Design 2016, vol. 109, pp. 1422-1431.CrossRef S. K. Albert, K. Laha, A. K. Bhaduri, T. Jayakumar and E. Rajendrakumar, Fusion Engineering and Design 2016, vol. 109, pp. 1422-1431.CrossRef
9.
Zurück zum Zitat M. D. Mathew, J. Vanaja, K. Laha, G. Varaprasad Reddy, K. S. Chandravathi and K. Bhanu Sankara Rao, Journal of Nuclear Materials 2011, vol. 417, pp. 77-80.CrossRef M. D. Mathew, J. Vanaja, K. Laha, G. Varaprasad Reddy, K. S. Chandravathi and K. Bhanu Sankara Rao, Journal of Nuclear Materials 2011, vol. 417, pp. 77-80.CrossRef
11.
Zurück zum Zitat D. P. Rao Palaparti, B. K. Choudhary, E. Isaac Samuel, V. S. Srinivasan and M. D. Mathew, Materials Science and Engineering: A 2012, vol. 538, pp. 110-117.CrossRef D. P. Rao Palaparti, B. K. Choudhary, E. Isaac Samuel, V. S. Srinivasan and M. D. Mathew, Materials Science and Engineering: A 2012, vol. 538, pp. 110-117.CrossRef
12.
Zurück zum Zitat J. Vanaja, K. Laha, Shiju Sam, M. Nandagopal, S. Panneer Selvi, M. D. Mathew, T. Jayakumar and E. Rajendra Kumar, Journal of Nuclear Materials 2012, vol. 424, pp. 116-122.CrossRef J. Vanaja, K. Laha, Shiju Sam, M. Nandagopal, S. Panneer Selvi, M. D. Mathew, T. Jayakumar and E. Rajendra Kumar, Journal of Nuclear Materials 2012, vol. 424, pp. 116-122.CrossRef
13.
Zurück zum Zitat Y. Li, Q. Huang, Y. Wu, T. Nagasaka and T. Muroga, Journal of Nuclear Materials 2007, vol. 367, pp. 117-121.CrossRef Y. Li, Q. Huang, Y. Wu, T. Nagasaka and T. Muroga, Journal of Nuclear Materials 2007, vol. 367, pp. 117-121.CrossRef
14.
Zurück zum Zitat Enrico Lucon and Willy Vandermeulen, Journal of Nuclear Materials 2009, vol. 386, pp. 254-256.CrossRef Enrico Lucon and Willy Vandermeulen, Journal of Nuclear Materials 2009, vol. 386, pp. 254-256.CrossRef
15.
Zurück zum Zitat B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau and G. LeMarois, Fusion Engineering and Design 2003, vol. 69, pp. 197-203.CrossRef B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau and G. LeMarois, Fusion Engineering and Design 2003, vol. 69, pp. 197-203.CrossRef
16.
Zurück zum Zitat P. Fernández, A. M. Lancha, J. Lapeña, R. Lindau, M. Rieth and M. Schirra, Fusion Engineering and Design 2005, vol. 75, pp. 1003-1008.CrossRef P. Fernández, A. M. Lancha, J. Lapeña, R. Lindau, M. Rieth and M. Schirra, Fusion Engineering and Design 2005, vol. 75, pp. 1003-1008.CrossRef
17.
Zurück zum Zitat J. Vanaja, K. Laha, R. Mythili, K. S. Chandravathi, S. Saroja and M. D. Mathew, Materials Science and Engineering: A 2012, vol. 533, pp. 17-25.CrossRef J. Vanaja, K. Laha, R. Mythili, K. S. Chandravathi, S. Saroja and M. D. Mathew, Materials Science and Engineering: A 2012, vol. 533, pp. 17-25.CrossRef
18.
Zurück zum Zitat Wen-Tao Wang, Xun-Zhong Guo, Bo Huang, Jie Tao, Hua-Guan Li and Wen-Jiao Pei, Materials Science and Engineering: A 2014, vol. 599, pp. 134-140.CrossRef Wen-Tao Wang, Xun-Zhong Guo, Bo Huang, Jie Tao, Hua-Guan Li and Wen-Jiao Pei, Materials Science and Engineering: A 2014, vol. 599, pp. 134-140.CrossRef
19.
Zurück zum Zitat J. T. A. Pollock, S. G. Barton and R. C. Clissold, Materials Science and Engineering 1981, vol. 49, pp. 155-171.CrossRef J. T. A. Pollock, S. G. Barton and R. C. Clissold, Materials Science and Engineering 1981, vol. 49, pp. 155-171.CrossRef
20.
Zurück zum Zitat Krishna Guguloth, J. Swaminathan, Nilima Roy and R. N. Ghosh, Materials Science and Engineering: A 2017, vol. 684, pp. 683-696.CrossRef Krishna Guguloth, J. Swaminathan, Nilima Roy and R. N. Ghosh, Materials Science and Engineering: A 2017, vol. 684, pp. 683-696.CrossRef
21.
Zurück zum Zitat Yang-Il Jung, Yong-Nam Seol, Byoung-Kwon Choi and Jeong-Yong Park, Materials & Design 2012, vol. 42, pp. 118-123.CrossRef Yang-Il Jung, Yong-Nam Seol, Byoung-Kwon Choi and Jeong-Yong Park, Materials & Design 2012, vol. 42, pp. 118-123.CrossRef
22.
Zurück zum Zitat Kazuyuki Furuya, Eiichi Wakai, Masami Ando, Tomotsugu Sawai, Akira Iwabuchi, Kazuyuki Nakamura and Hiroshi Takeuchi, Fusion Engineering and Design 2003, vol. 69, pp. 385-389.CrossRef Kazuyuki Furuya, Eiichi Wakai, Masami Ando, Tomotsugu Sawai, Akira Iwabuchi, Kazuyuki Nakamura and Hiroshi Takeuchi, Fusion Engineering and Design 2003, vol. 69, pp. 385-389.CrossRef
23.
Zurück zum Zitat Dipti Samantaray, Sumantra Mandal and A. K. Bhaduri, Materials Science and Engineering: A 2011, vol. 528, pp. 5204-5211.CrossRef Dipti Samantaray, Sumantra Mandal and A. K. Bhaduri, Materials Science and Engineering: A 2011, vol. 528, pp. 5204-5211.CrossRef
24.
Zurück zum Zitat G. Yu, N. Nita and N. Baluc, Fusion Engineering and Design 2005, vol. 75, pp. 1037-1041.CrossRef G. Yu, N. Nita and N. Baluc, Fusion Engineering and Design 2005, vol. 75, pp. 1037-1041.CrossRef
25.
Zurück zum Zitat P. Anderson, T. Bellgardt and F. L. Jones, Materials Science and Technology 2003, vol. 19, pp. 207-213.CrossRef P. Anderson, T. Bellgardt and F. L. Jones, Materials Science and Technology 2003, vol. 19, pp. 207-213.CrossRef
26.
Zurück zum Zitat Saber Khayatzadeh, David W. J. Tanner, Christopher E. Truman, Peter E. J. Flewitt and David J. Smith, Engineering Fracture Mechanics 2017, vol. 175, pp. 57-71.CrossRef Saber Khayatzadeh, David W. J. Tanner, Christopher E. Truman, Peter E. J. Flewitt and David J. Smith, Engineering Fracture Mechanics 2017, vol. 175, pp. 57-71.CrossRef
27.
Zurück zum Zitat K. Sawada, K. Kubo and F. Abe, Materials Science and Engineering: A 2001, vol. 319, pp. 784-787.CrossRef K. Sawada, K. Kubo and F. Abe, Materials Science and Engineering: A 2001, vol. 319, pp. 784-787.CrossRef
28.
Zurück zum Zitat Apu Sarkar, Sandeep A Chandanshive, Manoj K Thota and Rajeev Kapoor, Journal of Alloys and Compounds 2017, vol. 703, pp. 56-66.CrossRef Apu Sarkar, Sandeep A Chandanshive, Manoj K Thota and Rajeev Kapoor, Journal of Alloys and Compounds 2017, vol. 703, pp. 56-66.CrossRef
29.
Zurück zum Zitat G.E. Dieter: Mechanical Metallurgy, SI Metric ed., 1988, pp. 447–48. G.E. Dieter: Mechanical Metallurgy, SI Metric ed., 1988, pp. 447–48.
30.
Zurück zum Zitat B. Kombaiah and K. Linga Murty, Philosophical Magazine 2015, vol. 95, pp. 1656-1679.CrossRef B. Kombaiah and K. Linga Murty, Philosophical Magazine 2015, vol. 95, pp. 1656-1679.CrossRef
31.
Zurück zum Zitat W.D. Callister: Material Science and Engineering, 7th ed., 2007, p. 119. W.D. Callister: Material Science and Engineering, 7th ed., 2007, p. 119.
32.
Zurück zum Zitat Dipti Samantaray, C. Phaniraj, Sumantra Mandal and A. K. Bhaduri, Materials Science and Engineering: A 2011, vol. 528, pp. 1071-1077.CrossRef Dipti Samantaray, C. Phaniraj, Sumantra Mandal and A. K. Bhaduri, Materials Science and Engineering: A 2011, vol. 528, pp. 1071-1077.CrossRef
33.
Zurück zum Zitat H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics. H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics.
34.
Zurück zum Zitat B. N. Mehrotra and K. Tangri, Acta Metallurgica 1980, vol. 28, pp. 1385-1394.CrossRef B. N. Mehrotra and K. Tangri, Acta Metallurgica 1980, vol. 28, pp. 1385-1394.CrossRef
Metadaten
Titel
High Temperature Uniaxial Compression and Stress–Relaxation Behavior of India-Specific RAFM Steel
verfasst von
Naimish S. Shah
Saurav Sunil
Apu Sarkar
Publikationsdatum
03.05.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 7/2018
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4641-0

Weitere Artikel der Ausgabe 7/2018

Metallurgical and Materials Transactions A 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.