Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 7/2018

11.05.2018

High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy

verfasst von: R. K. Gupta, V. Anil Kumar, Arjun Sukumaran, Vinod Kumar

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s−1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of ~ 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent ‘n’ of the base metal and weldment was ~ 0.519. Activation energy ‘Q’ of base metal and EB weldments were 420 to 535 kJ mol−1 determined through isothermal tensile tests and 625 to 662 kJ mol−1 through jump-temperature tensile tests. Strain rate sensitivity ‘m’ was low (< 0.119) for the base metal and (< 0.164) for the weldment. The δ phase was revealed in specimens annealed at 700 °C, whereas, twins and fully recrystallized grains were observed in specimens annealed at 1025 °C. Low-angle misorientation and strain localization in the welds and the HAZ during tensile testing at higher temperature and strain rates indicates subgrain formation and recrystallization. Higher elongation in the weldment (at Test temperature > 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.L. Eiselstein and D.J. Tiliack: in Superalloys 718, 625 and various derivatives, E.A. Loria, ed., Minerals Metals and Materials Society, Warrendale, PA, 1991, pp. 1–14. H.L. Eiselstein and D.J. Tiliack: in Superalloys 718, 625 and various derivatives, E.A. Loria, ed., Minerals Metals and Materials Society, Warrendale, PA, 1991, pp. 1–14.
2.
Zurück zum Zitat V. Shankar, K. Bhanu Shankar Rao and S.L. Mannan: J. Nucl. Mater. 2001, vol. 288, pp. 222–232.CrossRef V. Shankar, K. Bhanu Shankar Rao and S.L. Mannan: J. Nucl. Mater. 2001, vol. 288, pp. 222–232.CrossRef
3.
Zurück zum Zitat M. Jouiad, E. Marin, R.S. Devarapalli, J. Cormier, F. Ravaux, C. Le Gall and J. M. Franchet: Mater. Des. 2016, vol. 102, pp.284-296.CrossRef M. Jouiad, E. Marin, R.S. Devarapalli, J. Cormier, F. Ravaux, C. Le Gall and J. M. Franchet: Mater. Des. 2016, vol. 102, pp.284-296.CrossRef
5.
6.
Zurück zum Zitat M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao: Mater. Char. 2008, vol. 59, pp. 508 – 513.CrossRef M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao: Mater. Char. 2008, vol. 59, pp. 508 – 513.CrossRef
7.
Zurück zum Zitat Q. Guo, D. Li, S. Guo, H. Peng and J. Hu: J. Nucl. Mater. 2011, vol. 414, pp. 440–450.CrossRef Q. Guo, D. Li, S. Guo, H. Peng and J. Hu: J. Nucl. Mater. 2011, vol. 414, pp. 440–450.CrossRef
8.
Zurück zum Zitat D. Li, Q. Guo, S. Guo, H. Peng and Z. Wu: Mater. Des. 2011, vol. 32, pp. 696–705.CrossRef D. Li, Q. Guo, S. Guo, H. Peng and Z. Wu: Mater. Des. 2011, vol. 32, pp. 696–705.CrossRef
9.
Zurück zum Zitat X. M Chen, Y.C. Lin, D-X Wen, J-L Zhang and M. He: Mater. Des. 2014, vol. 57, pp. 568-577.CrossRef X. M Chen, Y.C. Lin, D-X Wen, J-L Zhang and M. He: Mater. Des. 2014, vol. 57, pp. 568-577.CrossRef
10.
Zurück zum Zitat Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo and H. Li : Mater. Des. 2016, vol. 89, pp. 964–977.CrossRef Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo and H. Li : Mater. Des. 2016, vol. 89, pp. 964–977.CrossRef
11.
Zurück zum Zitat K.D. Ramkumar, R. Sridhar, S. Periwal, S. Oza, V. Saxena, P. Hidad and N. Arivazhagan: Mater. Des. 1995, vol. 68, pp. 158–166.CrossRef K.D. Ramkumar, R. Sridhar, S. Periwal, S. Oza, V. Saxena, P. Hidad and N. Arivazhagan: Mater. Des. 1995, vol. 68, pp. 158–166.CrossRef
12.
Zurück zum Zitat M. Shakil, M. Ahmad, N.H. Tariq, B.A. Hasan, J.I. Akhter, E. Ahmed, M. Mehmood, M.A. Choudhry and M. Iqbal: Vac. 2014, vol. 110, pp. 121 – 126.CrossRef M. Shakil, M. Ahmad, N.H. Tariq, B.A. Hasan, J.I. Akhter, E. Ahmed, M. Mehmood, M.A. Choudhry and M. Iqbal: Vac. 2014, vol. 110, pp. 121 – 126.CrossRef
13.
Zurück zum Zitat K.H. Song and K. Nakata: Mater. Trans. 2009, vol. 50A, pp. 2498–2501.CrossRef K.H. Song and K. Nakata: Mater. Trans. 2009, vol. 50A, pp. 2498–2501.CrossRef
14.
15.
Zurück zum Zitat X. Xing, X. Di and B. Wang: J. Alloys Compds. 2014, vol. 593, pp. 110–116.CrossRef X. Xing, X. Di and B. Wang: J. Alloys Compds. 2014, vol. 593, pp. 110–116.CrossRef
16.
Zurück zum Zitat L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo: Metal. Mater. Trans. A. 2014, vol. 45, pp. 2963–2982.CrossRef L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo: Metal. Mater. Trans. A. 2014, vol. 45, pp. 2963–2982.CrossRef
17.
Zurück zum Zitat F. Cortial, J.M. Corrieu and C. Vernot-Loier: Metal. Mater. Trans. A. 1995, vol. 26(5), pp. 1273-1286.CrossRef F. Cortial, J.M. Corrieu and C. Vernot-Loier: Metal. Mater. Trans. A. 1995, vol. 26(5), pp. 1273-1286.CrossRef
18.
Zurück zum Zitat P.K. Korrapati, V.K. Avasarala, M. Bhushan, K.D. Ramkumar, N. Arivazhagan and S. Narayanan: Proc. Eng. 2014, vol. 75, pp. 9-13.CrossRef P.K. Korrapati, V.K. Avasarala, M. Bhushan, K.D. Ramkumar, N. Arivazhagan and S. Narayanan: Proc. Eng. 2014, vol. 75, pp. 9-13.CrossRef
20.
Zurück zum Zitat J. Mittra, S. Banerjee, R. Tewari and G.K. Dey: Mater. Sci. Eng. A. 2013, vol. 574, pp. 86-93.CrossRef J. Mittra, S. Banerjee, R. Tewari and G.K. Dey: Mater. Sci. Eng. A. 2013, vol. 574, pp. 86-93.CrossRef
24.
Zurück zum Zitat V. Anil-Kumar, R.K. Gupta, S.V.S. Narayana-Murty and A. D. Prasad: J. Alloys Compds. 2016, vol. 676, pp. 527-541.CrossRef V. Anil-Kumar, R.K. Gupta, S.V.S. Narayana-Murty and A. D. Prasad: J. Alloys Compds. 2016, vol. 676, pp. 527-541.CrossRef
25.
Zurück zum Zitat A. Smolej, B. Skaza and M. Fazarinc: Mater. Geoenviron. 2009, vol. 56(4), pp. 389–399. A. Smolej, B. Skaza and M. Fazarinc: Mater. Geoenviron. 2009, vol. 56(4), pp. 389–399.
26.
Zurück zum Zitat J.S. Kim and H.W. Lee: Metal. Mater. Trans. A. 2016, vol. 47, pp. 6109-6120.CrossRef J.S. Kim and H.W. Lee: Metal. Mater. Trans. A. 2016, vol. 47, pp. 6109-6120.CrossRef
27.
Zurück zum Zitat M. Gopalakrishna-Pillai, R.K. Gupta, B. Pant and P.S. Sreejith: Trans. IIM. 2015, vol. 68(3), pp. 423-431. M. Gopalakrishna-Pillai, R.K. Gupta, B. Pant and P.S. Sreejith: Trans. IIM. 2015, vol. 68(3), pp. 423-431.
28.
Zurück zum Zitat P. Maj, J. Zdunek, J. Mizera, K. J. Kurzydlowski, B. Sakowicz and M. Kaminski; Met. Mater. Int. 2017, vol. 23(1), pp. 54-67.CrossRef P. Maj, J. Zdunek, J. Mizera, K. J. Kurzydlowski, B. Sakowicz and M. Kaminski; Met. Mater. Int. 2017, vol. 23(1), pp. 54-67.CrossRef
29.
Zurück zum Zitat E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T. H. G. Herold, and S.N.G.Daniel: Metal. Mater. Trans. A. 2017, vol. 48, pp. 5547-5558.CrossRef E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T. H. G. Herold, and S.N.G.Daniel: Metal. Mater. Trans. A. 2017, vol. 48, pp. 5547-5558.CrossRef
30.
Zurück zum Zitat J.B. Singh, A. Verma, D.M. Jaiswal, N. Kumar, R.D. Patel and J.K. Chakravartty: Mater. Sci. Eng. A. 2015, vol. 644, pp. 254–267.CrossRef J.B. Singh, A. Verma, D.M. Jaiswal, N. Kumar, R.D. Patel and J.K. Chakravartty: Mater. Sci. Eng. A. 2015, vol. 644, pp. 254–267.CrossRef
31.
Zurück zum Zitat M. Sundararaman, L. Kumar, G. Eswara Prasad, P. Mukhopadhyay and S. Banerjee: Metall. Trans. A. Phys. Metall. Mater. Sci. 1999, vol.30, pp. 41–51.CrossRef M. Sundararaman, L. Kumar, G. Eswara Prasad, P. Mukhopadhyay and S. Banerjee: Metall. Trans. A. Phys. Metall. Mater. Sci. 1999, vol.30, pp. 41–51.CrossRef
32.
Zurück zum Zitat F.J. Humphreys and M. Hatherly (2004) Recrystallization and Related Annealing Phenomena, 2nd edn. Elsevier, Amsterdam. F.J. Humphreys and M. Hatherly (2004) Recrystallization and Related Annealing Phenomena, 2nd edn. Elsevier, Amsterdam.
33.
Zurück zum Zitat Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen and D.X. Wen: Mater. Des. 2015, vol. 74, pp. 108–118.CrossRef Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen and D.X. Wen: Mater. Des. 2015, vol. 74, pp. 108–118.CrossRef
34.
Zurück zum Zitat I.J. Moore, J.I. Taylor, M.W. Tracy, M.G. Burke and E.J. Palmiere: Mater. Sci. Eng. A. 2017, vol. 682, pp. 402-409.CrossRef I.J. Moore, J.I. Taylor, M.W. Tracy, M.G. Burke and E.J. Palmiere: Mater. Sci. Eng. A. 2017, vol. 682, pp. 402-409.CrossRef
35.
Zurück zum Zitat M. Sundararaman and P. Mukhopadhyay: Mater. Sci. For. 1985, vol. 3, pp. 273-280. M. Sundararaman and P. Mukhopadhyay: Mater. Sci. For. 1985, vol. 3, pp. 273-280.
39.
Zurück zum Zitat L.M. Suave, J. Cormier, D. Bertheau, P. Villechaise, A. Soula, Z. Hervier and J. Laigo, Mater. Sci. Eng. A. 2016, vol. 650, pp. 161-170.CrossRef L.M. Suave, J. Cormier, D. Bertheau, P. Villechaise, A. Soula, Z. Hervier and J. Laigo, Mater. Sci. Eng. A. 2016, vol. 650, pp. 161-170.CrossRef
Metadaten
Titel
High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy
verfasst von
R. K. Gupta
V. Anil Kumar
Arjun Sukumaran
Vinod Kumar
Publikationsdatum
11.05.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 7/2018
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4652-x

Weitere Artikel der Ausgabe 7/2018

Metallurgical and Materials Transactions A 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.