Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2022

26.04.2022 | Technical Article

High Tensile Properties and Low Surface Roughness of Gr/Cu Foils

verfasst von: Kun Xia Wei, Xin Chen Zheng, Wei Wei, Igor V. Alexandrov

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cu foil with low surface roughness and high tensile properties is a challenge in the field of electronic materials. In this research, the graphene/copper foils (GrCFs) have been fabricated by direct current electrodeposition. The changes in the structure and properties of GrCFs caused by mechanical agitating rate were investigated. XRD, SEM, laser scanning confocal microscopy and tensile equipment were employed to examine surface quality, surface roughness, microstructure and tensile property of GrCFs. The results indicated that the electrodeposition particles became denser and larger, and the deposition rate increased with increasing the mechanical agitating rate. However, the surface roughness (Ra) of the GrCFs decreased from 3.49 ± 0.06 to 0.90 ± 0.06 μm and then increased to 1.59 ± 0.05 μm. When the CuSO4·5H2O concentration was 70 g/L and the mechanical agitating rate was 200 rpm, the minimum surface roughness of 0.90 ± 0.06 μm and the maximum tensile strength of 558 ± 29 MPa were simultaneously obtained. The enhancement of tensile strength of GrCFs was primarily ascribed to the refinement of the crystalline size and the Gr reinforcement. The surface roughness of GrCFs was dominated by an appropriate agitating rate and Cu2+ concentration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I.A. Kinloch and R.J. Young, Copper/Graphene Composites: A Review, J. Mater. Sci., 2019, 54(19), p 12236–12289.CrossRef P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I.A. Kinloch and R.J. Young, Copper/Graphene Composites: A Review, J. Mater. Sci., 2019, 54(19), p 12236–12289.CrossRef
2.
Zurück zum Zitat G. Song, Q. Wang, L. Sun, S. Li, Y. Sun, Q. Fu and C. Pan, One-Step Synthesis of Sandwich-Type Cu/Graphene/Cu Ultrathin Foil with Enhanced Property Via Electrochemical Route, Mater. Design, 2020, 191, p 108629.CrossRef G. Song, Q. Wang, L. Sun, S. Li, Y. Sun, Q. Fu and C. Pan, One-Step Synthesis of Sandwich-Type Cu/Graphene/Cu Ultrathin Foil with Enhanced Property Via Electrochemical Route, Mater. Design, 2020, 191, p 108629.CrossRef
3.
Zurück zum Zitat R.S. Timsit, High Speed Electronic Connectors: A Review of Electrical Contact Properties, IEICE Trans. Electron., 2005, 88, p 1532–1545.CrossRef R.S. Timsit, High Speed Electronic Connectors: A Review of Electrical Contact Properties, IEICE Trans. Electron., 2005, 88, p 1532–1545.CrossRef
4.
Zurück zum Zitat C.G. Lee, Q.Y. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick and J. Hone, Frictional Characteristics of Atomically Thin Sheets, Science, 2010, 328, p p76-80.CrossRef C.G. Lee, Q.Y. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick and J. Hone, Frictional Characteristics of Atomically Thin Sheets, Science, 2010, 328, p p76-80.CrossRef
5.
Zurück zum Zitat R.F. Service, Carbon Sheets an Atom Thick Give Rise to Graphene Dreams, Science, 2009, 324, p p875-877.CrossRef R.F. Service, Carbon Sheets an Atom Thick Give Rise to Graphene Dreams, Science, 2009, 324, p p875-877.CrossRef
6.
Zurück zum Zitat D. Berman, A. Erdemir and A.V. Sumant, Graphene: A New Emerging Lubricant, Mater. Today, 2014, 17, p p31-42.CrossRef D. Berman, A. Erdemir and A.V. Sumant, Graphene: A New Emerging Lubricant, Mater. Today, 2014, 17, p p31-42.CrossRef
7.
Zurück zum Zitat C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao and G. Sundararajan, A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4, p 183–191. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao and G. Sundararajan, A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4, p 183–191.
8.
Zurück zum Zitat M. Diba, D.W.H. Fam, A.R. Boccaccini and M.S.P. Shaffer, Electrophoretic Deposition of Graphene-Related Materials: A Review of the Fundamentals, Prog. Mater Sci., 2016, 82, p p83-117.CrossRef M. Diba, D.W.H. Fam, A.R. Boccaccini and M.S.P. Shaffer, Electrophoretic Deposition of Graphene-Related Materials: A Review of the Fundamentals, Prog. Mater Sci., 2016, 82, p p83-117.CrossRef
9.
Zurück zum Zitat K. Jagannadham, Volume Fraction of Graphene Platelets in Copper-Graphene Composites, Metall. Mater. Trans. A, 2013, 44, p p552-559.CrossRef K. Jagannadham, Volume Fraction of Graphene Platelets in Copper-Graphene Composites, Metall. Mater. Trans. A, 2013, 44, p p552-559.CrossRef
10.
Zurück zum Zitat G. Huang, H. Wang, P. Cheng, H. Wang, B. Sun, S. Sun, C. Zhang, M. Chen and G. Ding, Preparation and Characterization of the Graphene-Cu Composite Film by Electrodeposition Process, Microelectron. Eng., 2016, 157, p p7-12.CrossRef G. Huang, H. Wang, P. Cheng, H. Wang, B. Sun, S. Sun, C. Zhang, M. Chen and G. Ding, Preparation and Characterization of the Graphene-Cu Composite Film by Electrodeposition Process, Microelectron. Eng., 2016, 157, p p7-12.CrossRef
11.
Zurück zum Zitat R.T. Mathew, S. Singam, P. Kollu, S. Bohm and M.J.N.V. Prasad, Achieving Exceptional Tensile Strength in Electrodeposited Copper Through Grain Refinement and Reinforcement Effect by Co-Deposition of Few Layered Graphene, J. Alloys Compd., 2020, 840, p 155725.CrossRef R.T. Mathew, S. Singam, P. Kollu, S. Bohm and M.J.N.V. Prasad, Achieving Exceptional Tensile Strength in Electrodeposited Copper Through Grain Refinement and Reinforcement Effect by Co-Deposition of Few Layered Graphene, J. Alloys Compd., 2020, 840, p 155725.CrossRef
12.
Zurück zum Zitat C.T.J. Low, R.G.A. Wills and F.C. Walsh, Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit, Surf. Coat. Technol., 2006, 201, p 371–383.CrossRef C.T.J. Low, R.G.A. Wills and F.C. Walsh, Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit, Surf. Coat. Technol., 2006, 201, p 371–383.CrossRef
13.
Zurück zum Zitat K. Zarebska and M. Skompska, Electrodeposition of CdS from Acidic Aqueous Thiosulfate Solution-Invesitigation of the Mechanism by Electrochemical Quartz Microbalance Technique, Electrochim. Acta, 2011, 56, p p5731-5739.CrossRef K. Zarebska and M. Skompska, Electrodeposition of CdS from Acidic Aqueous Thiosulfate Solution-Invesitigation of the Mechanism by Electrochemical Quartz Microbalance Technique, Electrochim. Acta, 2011, 56, p p5731-5739.CrossRef
14.
Zurück zum Zitat D. Grujicic and B. Pesic, Electrodeposition of Copper: The Nucleation Mechanisms, Electrochim. Acta, 2002, 47, p p2901-2912.CrossRef D. Grujicic and B. Pesic, Electrodeposition of Copper: The Nucleation Mechanisms, Electrochim. Acta, 2002, 47, p p2901-2912.CrossRef
15.
Zurück zum Zitat J.L. Rosa, A. Robin, M.B. Silva, C.A. Baldan and M.P. Peres, Electrodeposition of Copper on Titanium Wires: Taguchi Experimental Design Approach, J. Mater. Process. Technol., 2008, 209, p p1181-1188.CrossRef J.L. Rosa, A. Robin, M.B. Silva, C.A. Baldan and M.P. Peres, Electrodeposition of Copper on Titanium Wires: Taguchi Experimental Design Approach, J. Mater. Process. Technol., 2008, 209, p p1181-1188.CrossRef
16.
Zurück zum Zitat N.D. Nikolić, K.I. Popov and L.J. Pavlović, Morphologies of Copper Deposits Obtained by the Electrodeposition at High Overpotentials, Surf. Coat. Technol., 2006, 201, p p560-566.CrossRef N.D. Nikolić, K.I. Popov and L.J. Pavlović, Morphologies of Copper Deposits Obtained by the Electrodeposition at High Overpotentials, Surf. Coat. Technol., 2006, 201, p p560-566.CrossRef
17.
Zurück zum Zitat H. Cesiulis, A. Baltutiene, M.L. Donten and Z. Stojek, Increase Inrate of Electrodeposition and in Ni (II) Concentration in the Bath as a Way to Control Grain Size of Amorphous/Nanocrystalline Ni-W Alloys, J. Solid State Electrochem., 2002, 6, p p237-244.CrossRef H. Cesiulis, A. Baltutiene, M.L. Donten and Z. Stojek, Increase Inrate of Electrodeposition and in Ni (II) Concentration in the Bath as a Way to Control Grain Size of Amorphous/Nanocrystalline Ni-W Alloys, J. Solid State Electrochem., 2002, 6, p p237-244.CrossRef
18.
Zurück zum Zitat M. Saraji, B. Farajmand and E.H. Bafrouei, Development of Electrodeposited Nanostructural Poly (O-Aminophenol) Coating as a solid Phase Microextraction Fiber For Determination of Bisphenol A, Anal. Methods Environ. Chem. J., 2021, 4, p p34-46.CrossRef M. Saraji, B. Farajmand and E.H. Bafrouei, Development of Electrodeposited Nanostructural Poly (O-Aminophenol) Coating as a solid Phase Microextraction Fiber For Determination of Bisphenol A, Anal. Methods Environ. Chem. J., 2021, 4, p p34-46.CrossRef
19.
Zurück zum Zitat K.R. Mamaghani and S.M. Naghib, The Effect of Stirring Rate on Electrodeposition of Nanocrystalline Nickel Coatings and their Corrosion Behaviors and Mechanical Characteristics, Int. J. Electrochem. Sci., 2017, 12, p 5023–5035.CrossRef K.R. Mamaghani and S.M. Naghib, The Effect of Stirring Rate on Electrodeposition of Nanocrystalline Nickel Coatings and their Corrosion Behaviors and Mechanical Characteristics, Int. J. Electrochem. Sci., 2017, 12, p 5023–5035.CrossRef
20.
Zurück zum Zitat H.Y.R. Atapattu, D.S.M. De Silva, K.A.S. Pathiratne and I.M. Dharmadasa, Effect of Stirring Rate of Electrolyte on Properties of Electrodeposited CdS Layers, J. Mater. Sci. Mater. Electron., 2016, 27, p p5415-5421.CrossRef H.Y.R. Atapattu, D.S.M. De Silva, K.A.S. Pathiratne and I.M. Dharmadasa, Effect of Stirring Rate of Electrolyte on Properties of Electrodeposited CdS Layers, J. Mater. Sci. Mater. Electron., 2016, 27, p p5415-5421.CrossRef
21.
Zurück zum Zitat A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97, p 187401.CrossRef A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97, p 187401.CrossRef
22.
Zurück zum Zitat S.S. Nanda, M.J. Kim, K.S. Yeom, S.S.A. An, H. Ju and D.K. Yi, Raman Spectrum of Graphene with its Versatile Future Perspectives, TrAC Trends Anal. Chem., 2016, 80, p p125-131.CrossRef S.S. Nanda, M.J. Kim, K.S. Yeom, S.S.A. An, H. Ju and D.K. Yi, Raman Spectrum of Graphene with its Versatile Future Perspectives, TrAC Trends Anal. Chem., 2016, 80, p p125-131.CrossRef
23.
Zurück zum Zitat G.N. Ten, A.Y. Gerasimenko, M.S. Savelyev, A.V. Kuksin, P.N. Vasilevsky, E.P. Kitsyuk and V.I. Baranov, Influence of Edge Defects on Raman Spectra of Graphene, Lett. Mater., 2020, 10, p p89-93.CrossRef G.N. Ten, A.Y. Gerasimenko, M.S. Savelyev, A.V. Kuksin, P.N. Vasilevsky, E.P. Kitsyuk and V.I. Baranov, Influence of Edge Defects on Raman Spectra of Graphene, Lett. Mater., 2020, 10, p p89-93.CrossRef
24.
Zurück zum Zitat G. Dini, R. Ueji, A. Najafizadeh and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel Via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A, 2010, 527, p p2759-2763.CrossRef G. Dini, R. Ueji, A. Najafizadeh and S.M. Monir-Vaghefi, Flow Stress Analysis of TWIP Steel Via the XRD Measurement of Dislocation Density, Mater. Sci. Eng. A, 2010, 527, p p2759-2763.CrossRef
25.
Zurück zum Zitat J. Jiang, T.B. Britton and A.J. Wilkinson, Evolution of Dislocation Density Distributions in Copper During Tensile Deformation, Acta Mater., 2013, 61, p p7227-7239.CrossRef J. Jiang, T.B. Britton and A.J. Wilkinson, Evolution of Dislocation Density Distributions in Copper During Tensile Deformation, Acta Mater., 2013, 61, p p7227-7239.CrossRef
26.
Zurück zum Zitat G. Niu, Q.B. Tang, H.S. Zurob, H.B. Wu, L.X. Xu and N. Gong, Strong and Ductile Steel via High Dislocation Density and Heterogeneous Nano/Ultrafine Grains, Mater. Sci. Eng. A, 2019, 759, p p1-10.CrossRef G. Niu, Q.B. Tang, H.S. Zurob, H.B. Wu, L.X. Xu and N. Gong, Strong and Ductile Steel via High Dislocation Density and Heterogeneous Nano/Ultrafine Grains, Mater. Sci. Eng. A, 2019, 759, p p1-10.CrossRef
27.
Zurück zum Zitat Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao and L. Lu, History-Independent Cyclic Response of Nanotwinned Metals, Nature, 2017, 551, p p214-217.CrossRef Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao and L. Lu, History-Independent Cyclic Response of Nanotwinned Metals, Nature, 2017, 551, p p214-217.CrossRef
28.
Zurück zum Zitat Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon and S.M. Han, Strengthening Effect of Single-Atomic-Layer Graphene in Metal–Graphene Nanolayered Composites, Nat. Commun., 2013, 4, p 2114.CrossRef Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon and S.M. Han, Strengthening Effect of Single-Atomic-Layer Graphene in Metal–Graphene Nanolayered Composites, Nat. Commun., 2013, 4, p 2114.CrossRef
29.
Zurück zum Zitat N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scripta Mater., 2004, 51, p 801–806.CrossRef N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scripta Mater., 2004, 51, p 801–806.CrossRef
30.
Zurück zum Zitat F.C. Walsh, S.C. Wang and N. Zhou, The Electrodeposition of Composite Coatings: Diversity, Applications and Challenges, Curr. Opin. Electrochem., 2020, 20, p p8-19.CrossRef F.C. Walsh, S.C. Wang and N. Zhou, The Electrodeposition of Composite Coatings: Diversity, Applications and Challenges, Curr. Opin. Electrochem., 2020, 20, p p8-19.CrossRef
31.
Zurück zum Zitat L. Liu and M. Barigou, Numerical Modelling of Velocity Field and Phase Distribution in Dense Monodisperse Solid–Liquid Suspensions Under Different Regimes of Agitation: CFD and PEPT Experiments, Chem. Eng. Sci., 2013, 101, p p837-850.CrossRef L. Liu and M. Barigou, Numerical Modelling of Velocity Field and Phase Distribution in Dense Monodisperse Solid–Liquid Suspensions Under Different Regimes of Agitation: CFD and PEPT Experiments, Chem. Eng. Sci., 2013, 101, p p837-850.CrossRef
32.
Zurück zum Zitat M. Baiteche, S.M. Taghavi, D. Ziegler and M. Fafard, LES turbulence modeling approach for molten aluminium and electrolyte flow in aluminum electrolysis cell, Light Metals. Springer, Cham, 2017, p 679–686 M. Baiteche, S.M. Taghavi, D. Ziegler and M. Fafard, LES turbulence modeling approach for molten aluminium and electrolyte flow in aluminum electrolysis cell, Light Metals. Springer, Cham, 2017, p 679–686
33.
Zurück zum Zitat E.S.F. Cardoso, G.V. Fortunato and G. Maia, Use of Rotating Ring-Disk Electrodes to Investigate Graphene Nanoribbon Loadings for the Oxygen Reduction Reaction in Alkaline Medium, ChemElectroChem, 2018, 5, p p1691-1701.CrossRef E.S.F. Cardoso, G.V. Fortunato and G. Maia, Use of Rotating Ring-Disk Electrodes to Investigate Graphene Nanoribbon Loadings for the Oxygen Reduction Reaction in Alkaline Medium, ChemElectroChem, 2018, 5, p p1691-1701.CrossRef
Metadaten
Titel
High Tensile Properties and Low Surface Roughness of Gr/Cu Foils
verfasst von
Kun Xia Wei
Xin Chen Zheng
Wei Wei
Igor V. Alexandrov
Publikationsdatum
26.04.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06914-1

Weitere Artikel der Ausgabe 11/2022

Journal of Materials Engineering and Performance 11/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.