Skip to main content
Erschienen in: Colloid and Polymer Science 4/2013

01.04.2013 | Original Contribution

Highly accurate and simple analytical approach to nonlinear Poisson–Boltzmann equation

verfasst von: S. Zhou, G. Zhang

Erschienen in: Colloid and Polymer Science | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel method is suggested to analytically solve a nonlinear Poisson–Boltzmann (NLPB) equation. The method consists chiefly of reducing the NLPB equation to linear PB equation in several segments by approximating a free term of the NLPB equation by piecewise linear functions, and then, solving analytically the linear PB equation in each segment. Superiority of the method is illustrated by applying the method to solve the NLPB equation describing a colloid sphere immersed in an arbitrary valence and mixed electrolyte solution; extensive test indicates that the resulting analytical expressions for both the electrical potential distribution Ψ (r) and surface charge density/surface potential relationship (σ/Ψ 0) are characterized with two properties that mathematical structures are much simpler than those previously reported and application scope can be arbitrarily wide by adjusting the linear interpolation range. Finally, it is noted that the method is “universal” in that its applications are not limited to the NLPB equation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Krotova MK, Vasilevskaya VV, Makita N, Yoshikawa K, Khokhlov AR (2010) DNA compaction in a crowded environment with negatively charged proteins. Phys Rev Lett 105:128302CrossRef Krotova MK, Vasilevskaya VV, Makita N, Yoshikawa K, Khokhlov AR (2010) DNA compaction in a crowded environment with negatively charged proteins. Phys Rev Lett 105:128302CrossRef
2.
Zurück zum Zitat Yoshida E (2010) Self-assembly of poly(allylamine hydrochloride) through electrostatic interaction with sodium dodecyl sulfate. Colloid Polym Sci 288:1321–1325CrossRef Yoshida E (2010) Self-assembly of poly(allylamine hydrochloride) through electrostatic interaction with sodium dodecyl sulfate. Colloid Polym Sci 288:1321–1325CrossRef
3.
Zurück zum Zitat Elter P, Lange R, Beck U (2011) Electrostatic and dispersion interactions during protein adsorption on topographic nanostructures. Langmuir 27:8767–8775CrossRef Elter P, Lange R, Beck U (2011) Electrostatic and dispersion interactions during protein adsorption on topographic nanostructures. Langmuir 27:8767–8775CrossRef
4.
Zurück zum Zitat Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149CrossRef Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149CrossRef
5.
Zurück zum Zitat Ohshima H (2011) Electrostatic interaction between two spherical soft particles at small separations. Colloids Surf A Physicochem Eng Asp 379:18–20CrossRef Ohshima H (2011) Electrostatic interaction between two spherical soft particles at small separations. Colloids Surf A Physicochem Eng Asp 379:18–20CrossRef
6.
Zurück zum Zitat Ohshima H (1999) Electrostatic repulsion between two parallel plates covered with polymer brush layers. Colloid Polym Sci 277:535–540CrossRef Ohshima H (1999) Electrostatic repulsion between two parallel plates covered with polymer brush layers. Colloid Polym Sci 277:535–540CrossRef
7.
Zurück zum Zitat Hsu J-P, Huang C-H (2010) Electrical potentials of two identical planar, cylindrical, and spherical colloidal particles in a salt-free medium. J Colloid Interface Sci 348:402–407CrossRef Hsu J-P, Huang C-H (2010) Electrical potentials of two identical planar, cylindrical, and spherical colloidal particles in a salt-free medium. J Colloid Interface Sci 348:402–407CrossRef
8.
Zurück zum Zitat Ohshima H (1999) Electrostatic interaction between a cylinder and a planar surface. Colloid Polym Sci 277:563–569CrossRef Ohshima H (1999) Electrostatic interaction between a cylinder and a planar surface. Colloid Polym Sci 277:563–569CrossRef
9.
Zurück zum Zitat Ohshima H (2010) Approximate expression for the potential energy of the double-layer interaction between two parallel ion-penetrable membranes at small separations in an electrolyte solution. J Colloid Interface Sci 350:249–252CrossRef Ohshima H (2010) Approximate expression for the potential energy of the double-layer interaction between two parallel ion-penetrable membranes at small separations in an electrolyte solution. J Colloid Interface Sci 350:249–252CrossRef
10.
Zurück zum Zitat Hsu J-P, Huang C-H, Tseng S (2011) Electrical potentials of two identical particles with fixed surface charge density in a salt-free medium. J Colloid Interface Sci 356:550–556CrossRef Hsu J-P, Huang C-H, Tseng S (2011) Electrical potentials of two identical particles with fixed surface charge density in a salt-free medium. J Colloid Interface Sci 356:550–556CrossRef
11.
Zurück zum Zitat Fixman M (1982) The flexibility of polyelectrolyte molecules. J Chem Phys 76:6346–6353CrossRef Fixman M (1982) The flexibility of polyelectrolyte molecules. J Chem Phys 76:6346–6353CrossRef
12.
Zurück zum Zitat Hingerty BE, Ritchie RH, Ferrel TL, Turner JE (1985) Dielectric effects in biopolymers: the theory of ionic saturation revisited. Biopolymers 24:427–439CrossRef Hingerty BE, Ritchie RH, Ferrel TL, Turner JE (1985) Dielectric effects in biopolymers: the theory of ionic saturation revisited. Biopolymers 24:427–439CrossRef
13.
Zurück zum Zitat Misra VK, Draper DE (1999) The interpretation of Mg2+ binding isotherms for nucleic acids using Poisson–Boltzmann theory. J Mol Biol 294:1135–1147CrossRef Misra VK, Draper DE (1999) The interpretation of Mg2+ binding isotherms for nucleic acids using Poisson–Boltzmann theory. J Mol Biol 294:1135–1147CrossRef
15.
Zurück zum Zitat Goel T, Patra CN, Ghosh SK, Mukherjee T (2010) Three component model of cylindrical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory. J Chem Phys 132:194706CrossRef Goel T, Patra CN, Ghosh SK, Mukherjee T (2010) Three component model of cylindrical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory. J Chem Phys 132:194706CrossRef
16.
Zurück zum Zitat Guerrero-Garcia GI, Gonzalez-Tovar E, Chavez-Paez M, Lozada-Cassou M (2010) Overcharging and charge reversal in the electrical double layer around the point of zero charge. J Chem Phys 132:054903CrossRef Guerrero-Garcia GI, Gonzalez-Tovar E, Chavez-Paez M, Lozada-Cassou M (2010) Overcharging and charge reversal in the electrical double layer around the point of zero charge. J Chem Phys 132:054903CrossRef
17.
Zurück zum Zitat Misra VK, Draper DE (2000) Mg2+ binding to tRNA revisited: the nonlinear Poisson–Boltzmann model. J Mol Biol 299:813–825CrossRef Misra VK, Draper DE (2000) Mg2+ binding to tRNA revisited: the nonlinear Poisson–Boltzmann model. J Mol Biol 299:813–825CrossRef
18.
Zurück zum Zitat Bertonati C, Honig B, Alexov E (2007) Poisson–Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Biophys J 92:1891–1899CrossRef Bertonati C, Honig B, Alexov E (2007) Poisson–Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Biophys J 92:1891–1899CrossRef
19.
Zurück zum Zitat Misra VK, Hecht JL, Sharp KA, Friedman RA, Honig B (1994) Salt effects on protein-DNA interactions. The l-cI repressor and EcoRI endonuclease. J Mol Biol 238:264–280CrossRef Misra VK, Hecht JL, Sharp KA, Friedman RA, Honig B (1994) Salt effects on protein-DNA interactions. The l-cI repressor and EcoRI endonuclease. J Mol Biol 238:264–280CrossRef
20.
Zurück zum Zitat Ben-Tal N, Honig B, Miller C, McLaughlin S (1997) Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J 73:1717–1727CrossRef Ben-Tal N, Honig B, Miller C, McLaughlin S (1997) Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J 73:1717–1727CrossRef
21.
Zurück zum Zitat Murray D, McLaughlin S, Honig B (2001) The role of electrostatic interactions in the regulation of the membrane association of G protein beta gamma heterodimers. J Biol Chem 276:45153–45159CrossRef Murray D, McLaughlin S, Honig B (2001) The role of electrostatic interactions in the regulation of the membrane association of G protein beta gamma heterodimers. J Biol Chem 276:45153–45159CrossRef
22.
Zurück zum Zitat Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J Colloid Interface Sci 90:17–26CrossRef Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J Colloid Interface Sci 90:17–26CrossRef
23.
Zurück zum Zitat van Aken GA, Lekkerkerker HNW, Overbeek JTG, de Bruyn PL (1990) Adsorption of monovalent ions in thin spherical and cylindrical diffuse electrical double layers. J Phys Chem 94:8468–8472CrossRef van Aken GA, Lekkerkerker HNW, Overbeek JTG, de Bruyn PL (1990) Adsorption of monovalent ions in thin spherical and cylindrical diffuse electrical double layers. J Phys Chem 94:8468–8472CrossRef
24.
Zurück zum Zitat Hsu J-P, Kuo Y-C (1995) Approximate analytical expression for surface potential as a function of surface charge density. J Colloid Interface Sci 170:220–228CrossRef Hsu J-P, Kuo Y-C (1995) Approximate analytical expression for surface potential as a function of surface charge density. J Colloid Interface Sci 170:220–228CrossRef
25.
Zurück zum Zitat Ohshima H (1995) Surface charge density/surface potential relationship for a spherical colloidal particle in a solution of general electrolytes. J Colloid Interface Sci 171:525–527CrossRef Ohshima H (1995) Surface charge density/surface potential relationship for a spherical colloidal particle in a solution of general electrolytes. J Colloid Interface Sci 171:525–527CrossRef
26.
Zurück zum Zitat Zhou S (1998) An approximate analytic expression for the surface charge density/surface potential relationship for a spherical colloidal particle. J Colloid Interface Sci 208:347–350CrossRef Zhou S (1998) An approximate analytic expression for the surface charge density/surface potential relationship for a spherical colloidal particle. J Colloid Interface Sci 208:347–350CrossRef
27.
Zurück zum Zitat Tuinier R (2003) Approximate solutions to the Poisson–Boltzmann equation in spherical and cylindrical geometry. J Colloid Interface Sci 258:45–49CrossRef Tuinier R (2003) Approximate solutions to the Poisson–Boltzmann equation in spherical and cylindrical geometry. J Colloid Interface Sci 258:45–49CrossRef
28.
Zurück zum Zitat Lin S-H, Hsu J-P, Tseng S, Chen C-J (2005) Analytical expressions for the electrical potential near planar, cylindrical, and spherical surfaces for symmetric electrolytes. J Colloid Interface Sci 281:255–257CrossRef Lin S-H, Hsu J-P, Tseng S, Chen C-J (2005) Analytical expressions for the electrical potential near planar, cylindrical, and spherical surfaces for symmetric electrolytes. J Colloid Interface Sci 281:255–257CrossRef
29.
Zurück zum Zitat Teso A, Filho ED, Neto AA (1997) Solution of the Poisson–Boltzmann equation for a system with four ionic species. J Math Biol 35:814–824CrossRef Teso A, Filho ED, Neto AA (1997) Solution of the Poisson–Boltzmann equation for a system with four ionic species. J Math Biol 35:814–824CrossRef
30.
Zurück zum Zitat Tseng S, Wong N-B, Liu P-C, Hsu J-P (2007) Approximate analytical expressions for the electrical potential in a cavity containing salt-free medium. Langmuir 23:10448–10454CrossRef Tseng S, Wong N-B, Liu P-C, Hsu J-P (2007) Approximate analytical expressions for the electrical potential in a cavity containing salt-free medium. Langmuir 23:10448–10454CrossRef
31.
Zurück zum Zitat Zhou S, Zhang G (2011) Approximate analytical expressions for electrical potential distribution and surface charge density/surface potential relationship for planar, cylindrical, and spherical entities immersed in a general electrolyte solution. Colloids Surf, A Physicochem Eng Asp 385:28–39CrossRef Zhou S, Zhang G (2011) Approximate analytical expressions for electrical potential distribution and surface charge density/surface potential relationship for planar, cylindrical, and spherical entities immersed in a general electrolyte solution. Colloids Surf, A Physicochem Eng Asp 385:28–39CrossRef
32.
Zurück zum Zitat Zhou S, Wu H Analytical solutions of nonlinear Poisson–Boltzmann equation for colloidal particles immersed in a general electrolyte solution by homotopy perturbation technique. Colloid Polym Sci. doi:10.1007/s00396-012-2622-1 Zhou S, Wu H Analytical solutions of nonlinear Poisson–Boltzmann equation for colloidal particles immersed in a general electrolyte solution by homotopy perturbation technique. Colloid Polym Sci. doi:10.​1007/​s00396-012-2622-1
33.
Zurück zum Zitat Zhou S, Zhang G Approximate analytic solution of the nonlinear Poisson–Boltzmann equation for spherical colloidal particles immersed in a general electrolyte solution, Colloid Polym Sci doi:10.1007/s00396-012-2683-1 Zhou S, Zhang G Approximate analytic solution of the nonlinear Poisson–Boltzmann equation for spherical colloidal particles immersed in a general electrolyte solution, Colloid Polym Sci doi:10.​1007/​s00396-012-2683-1
34.
Zurück zum Zitat Frenkel D, Smit B (2002) Understanding molecular simulation. Academic, Boston Frenkel D, Smit B (2002) Understanding molecular simulation. Academic, Boston
Metadaten
Titel
Highly accurate and simple analytical approach to nonlinear Poisson–Boltzmann equation
verfasst von
S. Zhou
G. Zhang
Publikationsdatum
01.04.2013
Verlag
Springer-Verlag
Erschienen in
Colloid and Polymer Science / Ausgabe 4/2013
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-012-2805-9

Weitere Artikel der Ausgabe 4/2013

Colloid and Polymer Science 4/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.