Skip to main content
Erschienen in: Journal of Materials Science 11/2019

06.03.2019 | Electronic materials

Highly elastic and ultrathin nanopaper-based nanocomposites with superior electric and thermal characteristics

verfasst von: Jingyao Sun, Jian Zhuang, Junfeng Shi, Semen Kormakov, Ying Liu, Zhaogang Yang, Daming Wu

Erschienen in: Journal of Materials Science | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-performance elastic and ultrathin electric heating materials were prepared by forced impregnation of polydimethylsiloxane (PDMS) matrix into multiwalled carbon nanotube (MWCNT) nanopaper (NP) by using an efficient two-step ultrasonication treatment technique. Morphological feature, stretchability, electrical property, and electric heating behavior of the MWCNT/PDMS nanocomposite film (NC film) were investigated. Scanning electron microscope images confirmed that the MWCNTs were well impregnated in PDMS matrix with no aggregations. Relatively high MWCNT content (> 10 wt%), which results from the compact stack structure within NPs, in the MWCNT/PDMS NC film guaranteed the high thermal conductivity and excellent electric heating behaviors with significantly improved uniformity. The small thermal capacitance of PDMS matrix and high thermal conductivity of MWCNTs enabled temperature response rapidity at constant applied voltages. The superior and stable heating–cooling cyclic performances (temperature responsiveness, electric power efficiency, and steady-state maximum temperature) of MWCNT/PDMS NC film made it an ideal option for actual electric heating applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211CrossRef Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211CrossRef
2.
Zurück zum Zitat Verma P, Saini P, Malik RS, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon 89:308–317CrossRef Verma P, Saini P, Malik RS, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon 89:308–317CrossRef
3.
Zurück zum Zitat Zhang W, Xie H, Zhang R, Jian M, Wang C, Zheng Q et al (2015) Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon 86:358–362CrossRef Zhang W, Xie H, Zhang R, Jian M, Wang C, Zheng Q et al (2015) Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon 86:358–362CrossRef
4.
Zurück zum Zitat Zhang X, Yan X, He Q, Wei H, Long J, Guo J et al (2015) Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl Mater Interfaces 7:6125–6138CrossRef Zhang X, Yan X, He Q, Wei H, Long J, Guo J et al (2015) Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl Mater Interfaces 7:6125–6138CrossRef
5.
Zurück zum Zitat Yim Y-J, Park S-J (2015) Electromagnetic interference shielding effectiveness of high-density polyethylene composites reinforced with multi-walled carbon nanotubes. J Ind Eng Chem 21:155–157CrossRef Yim Y-J, Park S-J (2015) Electromagnetic interference shielding effectiveness of high-density polyethylene composites reinforced with multi-walled carbon nanotubes. J Ind Eng Chem 21:155–157CrossRef
6.
Zurück zum Zitat Yeom C, Chen K, Kiriya D, Yu Z, Cho G, Javey A (2015) Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Adv Mater 27:1561–1566CrossRef Yeom C, Chen K, Kiriya D, Yu Z, Cho G, Javey A (2015) Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Adv Mater 27:1561–1566CrossRef
7.
Zurück zum Zitat Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef
12.
Zurück zum Zitat Zhang W, Weng M, Zhou P, Chen L, Huang Z, Zhang L et al (2017) Transparency-switchable actuator based on aligned carbon nanotube and paraffin–polydimethylsiloxane composite. Carbon 116:625–632CrossRef Zhang W, Weng M, Zhou P, Chen L, Huang Z, Zhang L et al (2017) Transparency-switchable actuator based on aligned carbon nanotube and paraffin–polydimethylsiloxane composite. Carbon 116:625–632CrossRef
14.
Zurück zum Zitat Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746CrossRef Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746CrossRef
15.
Zurück zum Zitat Zeng Z, Chen M, Jin H, Li W, Xue X, Zhou L et al (2016) Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96:768–777CrossRef Zeng Z, Chen M, Jin H, Li W, Xue X, Zhou L et al (2016) Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96:768–777CrossRef
16.
Zurück zum Zitat Jiang L, Sheng L, Long C, Fan Z (2015) Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11:471–480CrossRef Jiang L, Sheng L, Long C, Fan Z (2015) Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11:471–480CrossRef
17.
Zurück zum Zitat Chen H, Zeng S, Chen M, Zhang Y, Li Q (2015) Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 92:271–296CrossRef Chen H, Zeng S, Chen M, Zhang Y, Li Q (2015) Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 92:271–296CrossRef
18.
Zurück zum Zitat Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HYY et al (2016) Printed carbon nanotube electronics and sensor systems. Adv Mater 28:4397–4414CrossRef Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HYY et al (2016) Printed carbon nanotube electronics and sensor systems. Adv Mater 28:4397–4414CrossRef
19.
Zurück zum Zitat Shi J, Li X, Cheng H, Liu Z, Zhao L, Yang T et al (2016) Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater 26:2078–2084CrossRef Shi J, Li X, Cheng H, Liu Z, Zhao L, Yang T et al (2016) Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater 26:2078–2084CrossRef
20.
Zurück zum Zitat Michelis F, Bodelot L, Bonnassieux Y, Lebental B (2015) Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95:1020–1026CrossRef Michelis F, Bodelot L, Bonnassieux Y, Lebental B (2015) Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95:1020–1026CrossRef
21.
Zurück zum Zitat Kim B, Park YD, Min K, Lee JH, Hwang SS, Hong SM et al (2011) Electric actuation of nanostructured thermoplastic elastomer gels with ultralarge electrostriction coefficients. Adv Funct Mater 21:3242–3249CrossRef Kim B, Park YD, Min K, Lee JH, Hwang SS, Hong SM et al (2011) Electric actuation of nanostructured thermoplastic elastomer gels with ultralarge electrostriction coefficients. Adv Funct Mater 21:3242–3249CrossRef
22.
Zurück zum Zitat Teo AJT, Mishra A, Park I, Kim Y-J, Park W-T, Yoon Y-J (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2:454–472CrossRef Teo AJT, Mishra A, Park I, Kim Y-J, Park W-T, Yoon Y-J (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2:454–472CrossRef
25.
Zurück zum Zitat Zeng Z, Jin H, Zhang L, Zhang H, Chen Z, Gao F et al (2015) Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites. Carbon 84:327–334CrossRef Zeng Z, Jin H, Zhang L, Zhang H, Chen Z, Gao F et al (2015) Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites. Carbon 84:327–334CrossRef
26.
Zurück zum Zitat Jeong YG, Jeon GW (2013) Microstructure and performance of multiwalled carbon nanotube/m-aramid composite films as electric heating elements. ACS Appl Mater Interfaces 5:6527–6534CrossRef Jeong YG, Jeon GW (2013) Microstructure and performance of multiwalled carbon nanotube/m-aramid composite films as electric heating elements. ACS Appl Mater Interfaces 5:6527–6534CrossRef
28.
Zurück zum Zitat Yan J, Jeong YG (2015) Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials. Mater Des 86:72–79CrossRef Yan J, Jeong YG (2015) Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials. Mater Des 86:72–79CrossRef
29.
Zurück zum Zitat Sun J, Zhuang J, Jiang H, Huang Y, Zheng X, Liu Y et al (2017) Thermal dissipation performance of metal-polymer composite heat exchanger with V-shape microgrooves: a numerical and experimental study. Appl Therm Eng 121:492–500CrossRef Sun J, Zhuang J, Jiang H, Huang Y, Zheng X, Liu Y et al (2017) Thermal dissipation performance of metal-polymer composite heat exchanger with V-shape microgrooves: a numerical and experimental study. Appl Therm Eng 121:492–500CrossRef
30.
Zurück zum Zitat Zhuang J, Hu W, Fan Y, Sun J, He X, Xu H et al (2018) Fabrication and testing of metal/polymer microstructure heat exchangers based on micro embossed molding method. Microsyst Technol 25(2):381–388CrossRef Zhuang J, Hu W, Fan Y, Sun J, He X, Xu H et al (2018) Fabrication and testing of metal/polymer microstructure heat exchangers based on micro embossed molding method. Microsyst Technol 25(2):381–388CrossRef
31.
Zurück zum Zitat Han J-E, Kim D, Yun K-S (2012) All-polymer hair structure with embedded three-dimensional piezoresistive force sensors. Sens Actuators A 188:89–94CrossRef Han J-E, Kim D, Yun K-S (2012) All-polymer hair structure with embedded three-dimensional piezoresistive force sensors. Sens Actuators A 188:89–94CrossRef
32.
Zurück zum Zitat Yu Y, Luo Y, Guo A, Yan L, Wu Y, Jiang K et al (2017) Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 9:6716–6723CrossRef Yu Y, Luo Y, Guo A, Yan L, Wu Y, Jiang K et al (2017) Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 9:6716–6723CrossRef
35.
Zurück zum Zitat Bae S-H, Lee Y, Sharma BK, Lee H-J, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242CrossRef Bae S-H, Lee Y, Sharma BK, Lee H-J, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242CrossRef
37.
Zurück zum Zitat Wu S, Ladani RB, Zhang J, Ghorbani K, Zhang X, Mouritz AP et al (2016) Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl Mater Interfaces 8:24853–24861CrossRef Wu S, Ladani RB, Zhang J, Ghorbani K, Zhang X, Mouritz AP et al (2016) Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl Mater Interfaces 8:24853–24861CrossRef
38.
Zurück zum Zitat Oh JY, Kim YS, Jung Y, Yang SJ, Park CR (2016) Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 10:2184–2192CrossRef Oh JY, Kim YS, Jung Y, Yang SJ, Park CR (2016) Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 10:2184–2192CrossRef
39.
Zurück zum Zitat Fan W, Miao Y-E, Huang Y, Tjiu WW, Liu T (2015) Flexible free-standing 3D porous N-doped graphene–carbon nanotube hybrid paper for high-performance supercapacitors. RSC Adv 5:9228–9236CrossRef Fan W, Miao Y-E, Huang Y, Tjiu WW, Liu T (2015) Flexible free-standing 3D porous N-doped graphene–carbon nanotube hybrid paper for high-performance supercapacitors. RSC Adv 5:9228–9236CrossRef
41.
Zurück zum Zitat Neitzert HC, Vertuccio L, Sorrentino A (2011) Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans Nanotechnol 10:688–693CrossRef Neitzert HC, Vertuccio L, Sorrentino A (2011) Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans Nanotechnol 10:688–693CrossRef
43.
Zurück zum Zitat Mikhalchan A, Fan Z, Tran TQ, Liu P, Tan VBC, Tay T-E et al (2016) Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 102:409–418CrossRef Mikhalchan A, Fan Z, Tran TQ, Liu P, Tan VBC, Tay T-E et al (2016) Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 102:409–418CrossRef
44.
Zurück zum Zitat Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5:4818–4825CrossRef Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5:4818–4825CrossRef
45.
Zurück zum Zitat Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L (2015) Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707CrossRef Kholmanov I, Kim J, Ou E, Ruoff RS, Shi L (2015) Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707CrossRef
46.
Zurück zum Zitat Chen H, Chen M, Di J, Xu G, Li H, Li Q (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116:3903–3909CrossRef Chen H, Chen M, Di J, Xu G, Li H, Li Q (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116:3903–3909CrossRef
47.
Zurück zum Zitat Kormakov S, He X, Huang Y, Liu Y, Sun J, Zheng X et al (2018) A mathematical model for predicting conductivity of polymer composites with a forced assembly network obtained by SCFNA method. Polym Compos. https://doi.org/10.1002/pc.24942 Kormakov S, He X, Huang Y, Liu Y, Sun J, Zheng X et al (2018) A mathematical model for predicting conductivity of polymer composites with a forced assembly network obtained by SCFNA method. Polym Compos. https://​doi.​org/​10.​1002/​pc.​24942
49.
Zurück zum Zitat Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7:5114–5121CrossRef Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7:5114–5121CrossRef
51.
Zurück zum Zitat Kim HS, Jang J-U, Yu J, Kim SY (2015) Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos Part B Eng 79:505–512CrossRef Kim HS, Jang J-U, Yu J, Kim SY (2015) Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos Part B Eng 79:505–512CrossRef
52.
Zurück zum Zitat El-Tantawy F, Kamada K, Ohnabe H (2002) In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater Lett 56:112–126CrossRef El-Tantawy F, Kamada K, Ohnabe H (2002) In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater Lett 56:112–126CrossRef
53.
Zurück zum Zitat El-Tantawy F (2001) Joule heating treatments of conductive butyl rubber/ceramic superconductor composites: a new way for improving the stability and reproducibility? Eur Polym J 37:565–574CrossRef El-Tantawy F (2001) Joule heating treatments of conductive butyl rubber/ceramic superconductor composites: a new way for improving the stability and reproducibility? Eur Polym J 37:565–574CrossRef
Metadaten
Titel
Highly elastic and ultrathin nanopaper-based nanocomposites with superior electric and thermal characteristics
verfasst von
Jingyao Sun
Jian Zhuang
Junfeng Shi
Semen Kormakov
Ying Liu
Zhaogang Yang
Daming Wu
Publikationsdatum
06.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03472-1

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.