Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2015 | Ausgabe 3/2015

Designs, Codes and Cryptography 3/2015

Highly nonlinear functions

Zeitschrift:
Designs, Codes and Cryptography > Ausgabe 3/2015
Autor:
Kai-Uwe Schmidt
Wichtige Hinweise
Communicated by J. Jedwab.

Abstract

Let f be a function from \(\mathbb {Z}_q^m\) to \(\mathbb {Z}_q\). Such a function f is bent if all values of its Fourier transform have absolute value 1. Bent functions are known to exist for all pairs \((m,q)\) except when m is odd and \(q\equiv 2\pmod 4\) and there is overwhelming evidence that no bent function exists in the latter case. In this paper the following problem is studied: how closely can the largest absolute value of the Fourier transform of f approach 1? For \(q=2\), this problem is equivalent to the old and difficult open problem of determining the covering radius of the first order Reed–Muller code. The main result is, loosely speaking, that the largest absolute value of the Fourier transform of f can be made arbitrarily close to 1 for q large enough.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Designs, Codes and Cryptography 3/2015 Zur Ausgabe

Premium Partner

    Bildnachweise