Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2020

28.02.2020 | Research Paper

Hole seeding in level set topology optimization via density fields

verfasst von: Jorge L. Barrera, Markus J. Geiss, Kurt Maute

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two approaches that use a density field for seeding holes in level set topology optimization are proposed. In these approaches, the level set field describes the material-void interface while the density field describes the material distribution within the material phase. Both fields are optimized simultaneously by coupling them through either a single abstract design variable field or a penalty term introduced into the objective function. These approaches eliminate drawbacks of level set topology optimization methods that rely on seeding the initial design domain with a large number of holes. Instead, the proposed approaches insert holes during the optimization process where beneficial. The dependency of the optimization results on the initial hole pattern is reduced, and the computational costs are lowered by keeping the number of elements intersected by the material interface at a minimum. In comparison with level set methods that use topological derivatives to seed small holes at distinct steps in the optimization process, the proposed approaches introduce holes continuously during the optimization process, with the hole size and shape being optimized for the particular design problem. The proposed approaches are studied using the extended finite element method for spatial discretization, and the solid isotropic material with penalization for material interpolation using fictitious densities. Their robustness with respect to algorithmic parameters, dependency on the density penalization, and performance are examined through 2D and 3D benchmark linear elastic numerical examples, and a geometrically complex mass minimization with stress constraint design problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetMATH Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetMATH
Zurück zum Zitat Allaire G, De Gournay F, Jouve F, Toader A-M (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59MathSciNetMATH Allaire G, De Gournay F, Jouve F, Toader A-M (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59MathSciNetMATH
Zurück zum Zitat Amestoy PR, Guermouche A, L’Excellent J-Y, Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput 32(2):136–156MathSciNet Amestoy PR, Guermouche A, L’Excellent J-Y, Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput 32(2):136–156MathSciNet
Zurück zum Zitat Andreasen C, Elingaard M, Aage N (2019) Level set topology and shape optimization by density methods using cutfem. Pre-print Andreasen C, Elingaard M, Aage N (2019) Level set topology and shape optimization by density methods using cutfem. Pre-print
Zurück zum Zitat Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758MathSciNetMATH Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758MathSciNetMATH
Zurück zum Zitat Barrera JL, Geiss MJ, Maute K (2019) A combined level set-XFEM- and density-based topology optimization approach. In: XIII World conference in structural and multidisciplinary optimization Barrera JL, Geiss MJ, Maute K (2019) A combined level set-XFEM- and density-based topology optimization approach. In: XIII World conference in structural and multidisciplinary optimization
Zurück zum Zitat Behrou R, Lawry M, Maute K (2017) Level set topology optimization of structural problems with interface cohesion. Int J Numer Methods Eng 112(8):990–1016MathSciNet Behrou R, Lawry M, Maute K (2017) Level set topology optimization of structural problems with interface cohesion. Int J Numer Methods Eng 112(8):990–1016MathSciNet
Zurück zum Zitat Belytschko T, Xiao S, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196MATH Belytschko T, Xiao S, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196MATH
Zurück zum Zitat Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modell Simul Mater Sci Eng 17(4):043001 Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modell Simul Mater Sci Eng 17(4):043001
Zurück zum Zitat Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications. Springer, Berlin Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods, and applications. Springer, Berlin
Zurück zum Zitat Bletzinger K-U, Maute K (1997) Towards generalized shape and topology optimization. Eng Optim 29 (1-4):201–216 Bletzinger K-U, Maute K (1997) Towards generalized shape and topology optimization. Eng Optim 29 (1-4):201–216
Zurück zum Zitat Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362MathSciNetMATH Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362MathSciNetMATH
Zurück zum Zitat Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341MathSciNetMATH Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341MathSciNetMATH
Zurück zum Zitat Burman E, Hansbo P (2014) Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes problem. ESAIM: Math Modell Numer Anal 48(3):859–874MathSciNetMATH Burman E, Hansbo P (2014) Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes problem. ESAIM: Math Modell Numer Anal 48(3):859–874MathSciNetMATH
Zurück zum Zitat Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) cutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501MathSciNetMATH Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) cutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501MathSciNetMATH
Zurück zum Zitat Burman E, Elfverson D, Hansbo P, Larson MG, Larsson K (2019) Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions. Comput Methods Appl Mech Eng 350:462–479MathSciNetMATH Burman E, Elfverson D, Hansbo P, Larson MG, Larsson K (2019) Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions. Comput Methods Appl Mech Eng 350:462–479MathSciNetMATH
Zurück zum Zitat Coffin P, Maute K (2016) Level set topology optimization of cooling and heating devices using a simplified convection model. Struct Multidiscip Optim 53(5):985–1003 Coffin P, Maute K (2016) Level set topology optimization of cooling and heating devices using a simplified convection model. Struct Multidiscip Optim 53(5):985–1003
Zurück zum Zitat Crane K, Weischedel C, Wardetzky M (2017) The heat method for distance computation. Commun ACM 60(11):90–99 Crane K, Weischedel C, Wardetzky M (2017) The heat method for distance computation. Commun ACM 60(11):90–99
Zurück zum Zitat Deng S, Suresh K (2015) Multi-constrained topology optimization via the topological sensitivity. Struct Multidiscip Optim 51(5):987–1001MathSciNet Deng S, Suresh K (2015) Multi-constrained topology optimization via the topological sensitivity. Struct Multidiscip Optim 51(5):987–1001MathSciNet
Zurück zum Zitat Deng S, Suresh K (2016) Multi-constrained 3D topology optimization via augmented topological level-set. Comput Struct 170:1–12 Deng S, Suresh K (2016) Multi-constrained 3D topology optimization via augmented topological level-set. Comput Struct 170:1–12
Zurück zum Zitat Dunning PD, Kim AH (2013) A new hole insertion method for level set based structural topology optimization. Int J Numer Methods Eng 93(1):118–134MathSciNetMATH Dunning PD, Kim AH (2013) A new hole insertion method for level set based structural topology optimization. Int J Numer Methods Eng 93(1):118–134MathSciNetMATH
Zurück zum Zitat Elfving T (1980) Block-iterative methods for consistent and inconsistent linear equations. Numer Math 35 (1):1–12MathSciNetMATH Elfving T (1980) Block-iterative methods for consistent and inconsistent linear equations. Numer Math 35 (1):1–12MathSciNetMATH
Zurück zum Zitat Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51 Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51
Zurück zum Zitat Geiss MJ (2019) Level-set-XFEM-density topology optimization of active structures: methods and applications. PhD thesis, University of Colorado at Boulder Geiss MJ (2019) Level-set-XFEM-density topology optimization of active structures: methods and applications. PhD thesis, University of Colorado at Boulder
Zurück zum Zitat Geiss MJ, Maute K (2018) Topology optimization of active structures using a higher-order level-set-XFEM-density approach. In: 2018 Multidisciplinary analysis and optimization conference, pp 4053 Geiss MJ, Maute K (2018) Topology optimization of active structures using a higher-order level-set-XFEM-density approach. In: 2018 Multidisciplinary analysis and optimization conference, pp 4053
Zurück zum Zitat Geiss MJ, Barrera JL, Boddeti N, Maute K (2019a) A regularization scheme for explicit level-set XFEM topology optimization. Front Mech Eng 14(2):153–170 Geiss MJ, Barrera JL, Boddeti N, Maute K (2019a) A regularization scheme for explicit level-set XFEM topology optimization. Front Mech Eng 14(2):153–170
Zurück zum Zitat Geiss MJ, Boddeti N, Weeger O, Maute K, Dunn ML (2019b) Combined level-set-XFEM-density topology optimization of four-dimensional printed structures undergoing large deformation. J Mech Des 141(5):051405 Geiss MJ, Boddeti N, Weeger O, Maute K, Dunn ML (2019b) Combined level-set-XFEM-density topology optimization of four-dimensional printed structures undergoing large deformation. J Mech Des 141(5):051405
Zurück zum Zitat Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET et al (2005) An overview of the trilinos project. ACM Trans Math Softw (TOMS) 31(3):397–423MathSciNetMATH Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET et al (2005) An overview of the trilinos project. ACM Trans Math Softw (TOMS) 31(3):397–423MathSciNetMATH
Zurück zum Zitat Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393MathSciNetMATH Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393MathSciNetMATH
Zurück zum Zitat Jansen M (2019) Explicit level set and density methods for topology optimization with equivalent minimum length scale constraints. Struct Multidiscip Optim 59(5):1775–1788MathSciNet Jansen M (2019) Explicit level set and density methods for topology optimization with equivalent minimum length scale constraints. Struct Multidiscip Optim 59(5):1775–1788MathSciNet
Zurück zum Zitat Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13MathSciNetMATH Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13MathSciNetMATH
Zurück zum Zitat Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326MathSciNetMATH Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326MathSciNetMATH
Zurück zum Zitat Kumar A, Gossard D (1996) Synthesis of optimal shape and topology of structures. J Mech Des 118 (1):68–74 Kumar A, Gossard D (1996) Synthesis of optimal shape and topology of structures. J Mech Des 118 (1):68–74
Zurück zum Zitat Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197MathSciNet Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197MathSciNet
Zurück zum Zitat Maute K, Ramm E (1995) Adaptive topology optimization. Struct Optim 10(2):100–112MATH Maute K, Ramm E (1995) Adaptive topology optimization. Struct Optim 10(2):100–112MATH
Zurück zum Zitat Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA J 35(11):1767–1773MATH Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA J 35(11):1767–1773MATH
Zurück zum Zitat Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91 Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91
Zurück zum Zitat Maute K, Tkachuk A, Wu J, Qi HJ, Ding Z, Dunn ML (2015) Level set topology optimization of printed active composites. J Mech Des 137(11):111402 Maute K, Tkachuk A, Wu J, Qi HJ, Ding Z, Dunn ML (2015) Level set topology optimization of printed active composites. J Mech Des 137(11):111402
Zurück zum Zitat Nitsche J (1971) ÜBer ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In: Abhandlungen aus dem mathematischen seminar der universität hamburg, vol 36. Springer, pages 9–15 Nitsche J (1971) ÜBer ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In: Abhandlungen aus dem mathematischen seminar der universität hamburg, vol 36. Springer, pages 9–15
Zurück zum Zitat Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33(4-5):375–386MathSciNetMATH Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33(4-5):375–386MathSciNetMATH
Zurück zum Zitat Park K-S, Youn S-K (2008) Topology optimization of shell structures using adaptive inner-front (aif) level set method. Struct Multidiscip Optim 36(1):43–58MathSciNetMATH Park K-S, Youn S-K (2008) Topology optimization of shell structures using adaptive inner-front (aif) level set method. Struct Multidiscip Optim 36(1):43–58MathSciNetMATH
Zurück zum Zitat Schott B, Wall W (2014) A new face-oriented stabilized XFEM approach for 2d and 3d incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 276:233–265MathSciNetMATH Schott B, Wall W (2014) A new face-oriented stabilized XFEM approach for 2d and 3d incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 276:233–265MathSciNetMATH
Zurück zum Zitat Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MathSciNetMATH Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MathSciNetMATH
Zurück zum Zitat Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidiscip Optim 57(1):17–38MathSciNet Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidiscip Optim 57(1):17–38MathSciNet
Zurück zum Zitat Sharma A, Villanueva H, Maute K (2017) On shape sensitivities with heaviside-enriched XFEM. Struct Multidiscip Optim 55(2):385–408MathSciNet Sharma A, Villanueva H, Maute K (2017) On shape sensitivities with heaviside-enriched XFEM. Struct Multidiscip Optim 55(2):385–408MathSciNet
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNet Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055MathSciNet
Zurück zum Zitat Soghrati S, Barrera JL (2016) On the application of higher-order elements in the hierarchical interface-enriched finite element method. Int J Numer Methods Eng 105(6):403–415MathSciNet Soghrati S, Barrera JL (2016) On the application of higher-order elements in the hierarchical interface-enriched finite element method. Int J Numer Methods Eng 105(6):403–415MathSciNet
Zurück zum Zitat Sokolowski J, Zochowski A (1999) Topological derivative for optimal control problems. Control Cybern 28:611–625MathSciNetMATH Sokolowski J, Zochowski A (1999) Topological derivative for optimal control problems. Control Cybern 28:611–625MathSciNetMATH
Zurück zum Zitat Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124 Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124
Zurück zum Zitat Suresh K (2010) A 199-line MAtlab code for Pareto-optimal tracing in topology optimization. Struct Multidiscip Optim 42(5):665–679MathSciNetMATH Suresh K (2010) A 199-line MAtlab code for Pareto-optimal tracing in topology optimization. Struct Multidiscip Optim 42(5):665–679MathSciNetMATH
Zurück zum Zitat Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscip Optim 47 (1):49–61MathSciNetMATH Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscip Optim 47 (1):49–61MathSciNetMATH
Zurück zum Zitat Suresh K, Takalloozadeh M (2013) Stress-constrained topology optimization: a topological level-set approach. Struct Multidiscip Optim 48(2):295–309MathSciNet Suresh K, Takalloozadeh M (2013) Stress-constrained topology optimization: a topological level-set approach. Struct Multidiscip Optim 48(2):295–309MathSciNet
Zurück zum Zitat Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573MathSciNetMATH Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573MathSciNetMATH
Zurück zum Zitat Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346MATH Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346MATH
Zurück zum Zitat Tran A, Yvonnet J, He Q-C, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM. Int J Numer Methods Eng 85(11):1436–1459MATH Tran A, Yvonnet J, He Q-C, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM. Int J Numer Methods Eng 85(11):1436–1459MATH
Zurück zum Zitat van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNet van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNet
Zurück zum Zitat Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150MathSciNetMATH Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150MathSciNetMATH
Zurück zum Zitat Villanueva CH, Maute K (2017) CutFEM topology optimization of 3d laminar incompressible flow problems. Comput Methods Appl Mech Eng 320:444–473MathSciNetMATH Villanueva CH, Maute K (2017) CutFEM topology optimization of 3d laminar incompressible flow problems. Comput Methods Appl Mech Eng 320:444–473MathSciNetMATH
Zurück zum Zitat Wang X, Mei Y, Wang M (2004) Incorporating topological derivatives into level set methods for structural topology optimization. In: 10Th AIAA/ISSMO multidisciplinary analysis and optimization conference, pp 4564 Wang X, Mei Y, Wang M (2004) Incorporating topological derivatives into level set methods for structural topology optimization. In: 10Th AIAA/ISSMO multidisciplinary analysis and optimization conference, pp 4564
Zurück zum Zitat Wang S, Lim K, Khoo B, Wang M (2007a) On hole nucleation in topology optimization using the level set methods. Comput Model Eng Sci 21(3):219 Wang S, Lim K, Khoo B, Wang M (2007a) On hole nucleation in topology optimization using the level set methods. Comput Model Eng Sci 21(3):219
Zurück zum Zitat Wang S, Lim K, Khoo B, Wang M (2007b) An extended level set method for shape and topology optimization. J Comput Phys 221(1):395–421 Wang S, Lim K, Khoo B, Wang M (2007b) An extended level set method for shape and topology optimization. J Comput Phys 221(1):395–421
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATH Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATH
Zurück zum Zitat Xia Q, Shi T, Xia L (2018) Topology optimization for heat conduction by combining level set method and BESO method. Int J Heat Mass Transfer 127:200–209 Xia Q, Shi T, Xia L (2018) Topology optimization for heat conduction by combining level set method and BESO method. Int J Heat Mass Transfer 127:200–209
Zurück zum Zitat Xia Q, Shi T, Xia L (2019) Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO. Comput Methods Appl Mech Eng 343:438–452MathSciNetMATH Xia Q, Shi T, Xia L (2019) Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO. Comput Methods Appl Mech Eng 343:438–452MathSciNetMATH
Metadaten
Titel
Hole seeding in level set topology optimization via density fields
verfasst von
Jorge L. Barrera
Markus J. Geiss
Kurt Maute
Publikationsdatum
28.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-019-02480-8

Weitere Artikel der Ausgabe 4/2020

Structural and Multidisciplinary Optimization 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.