Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2020

11.02.2020 | Research Paper

Level set topology optimization of cooling channels using the Darcy flow model

verfasst von: Sandilya Kambampati, H. Alicia Kim

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The level set topology optimization method for 2D and 3D cooling channels, considering convective heat transfer for high Reynolds number flows, is presented in this paper. The Darcy potential flow, which is a low-fidelity linear flow model, is used to simulate the flow using the finite element method. The resulting velocity field is used in a convection-diffusion model to simulate the heat transfer using the finite element method. A linear combination of the pressure drop and the average temperature is considered as the objective function, which is minimized subject to a volume constraint and a maximum length scale constraint. The results show that the pressure drop and the average temperature are conflicting criteria, and the trade-off between the two criteria is investigated. We perform a verification study by comparing the Darcy flow field of the obtained optimum designs with that of a high fidelity turbulence model. The verification study shows that there exists a reasonable agreement between the Darcy and the turbulent flow field for narrow channels. Therefore, by restricting the design space to narrow channels, we optimize the cooling performance and sufficiently capture the turbulent flow physics using the low-fidelity Darcy flow model. Finally, we show an example in 3D where we optimize the cooling channel topology that conforms to the surface of a sphere.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Arora JS (2004) Introduction to optimum design. Elsevier, Amsterdam Arora JS (2004) Introduction to optimum design. Elsevier, Amsterdam
Zurück zum Zitat Asmussen J, Alexandersen J, Sigmund O, Andreasen CS (2019) A “poor man’s” approach to topology optimization of natural convection problems. Struct Multidiscip Optim 59(4):1105–1124MathSciNetCrossRef Asmussen J, Alexandersen J, Sigmund O, Andreasen CS (2019) A “poor man’s” approach to topology optimization of natural convection problems. Struct Multidiscip Optim 59(4):1105–1124MathSciNetCrossRef
Zurück zum Zitat Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107MathSciNetCrossRef Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107MathSciNetCrossRef
Zurück zum Zitat Dilgen CB, Dilgen SB, Fuhrman DR, Sigmund O, Lazarov BS (2018a) Topology optimization of turbulent flows. Comput Methods Appl Mech Eng 331:363–393MathSciNetCrossRef Dilgen CB, Dilgen SB, Fuhrman DR, Sigmund O, Lazarov BS (2018a) Topology optimization of turbulent flows. Comput Methods Appl Mech Eng 331:363–393MathSciNetCrossRef
Zurück zum Zitat Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O, Lazarov BS (2018b) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidiscip Optim 57(5):1905–1918MathSciNetCrossRef Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O, Lazarov BS (2018b) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidiscip Optim 57(5):1905–1918MathSciNetCrossRef
Zurück zum Zitat Dimla D, Camilotto M, Miani F (2005) Design and optimisation of conformal cooling channels in injection moulding tools. J Mater Process Technol 164:1294–1300CrossRef Dimla D, Camilotto M, Miani F (2005) Design and optimisation of conformal cooling channels in injection moulding tools. J Mater Process Technol 164:1294–1300CrossRef
Zurück zum Zitat Dunning PD, Kim HA, Mullineux G (2011) Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid fem and structural optimization. Finite Elem Anal Des 47(8):933–941CrossRef Dunning PD, Kim HA, Mullineux G (2011) Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid fem and structural optimization. Finite Elem Anal Des 47(8):933–941CrossRef
Zurück zum Zitat Dunning PD, Kim HA (2015) Introducing the sequential linear programming level-set method for topology optimization. Struct Multidiscip Optim 51(3):631–643MathSciNetCrossRef Dunning PD, Kim HA (2015) Introducing the sequential linear programming level-set method for topology optimization. Struct Multidiscip Optim 51(3):631–643MathSciNetCrossRef
Zurück zum Zitat Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192MathSciNetCrossRef Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3):181–192MathSciNetCrossRef
Zurück zum Zitat Guest JK, Prévost JH (2006) Topology optimization of creeping fluid flows using a darcy–stokes finite element. Int J Numer Methods Eng 66(3):461–484MathSciNetCrossRef Guest JK, Prévost JH (2006) Topology optimization of creeping fluid flows using a darcy–stokes finite element. Int J Numer Methods Eng 66(3):461–484MathSciNetCrossRef
Zurück zum Zitat Hu P, He B, Ying L (2016) Numerical investigation on cooling performance of hot stamping tool with various channel designs. Appl Therm Eng 96:338–351CrossRef Hu P, He B, Ying L (2016) Numerical investigation on cooling performance of hot stamping tool with various channel designs. Appl Therm Eng 96:338–351CrossRef
Zurück zum Zitat Jahan S, Wu T, Shin Y, Tovar A, El-Mounayri H (2019) Thermo-fluid topology optimization and experimental study of conformal cooling channels for 3d printed plastic injection molds. Procedia Manuf 34:631–639CrossRef Jahan S, Wu T, Shin Y, Tovar A, El-Mounayri H (2019) Thermo-fluid topology optimization and experimental study of conformal cooling channels for 3d printed plastic injection molds. Procedia Manuf 34:631–639CrossRef
Zurück zum Zitat Koga AA, Lopes ECC, Nova HFV, De Lima CR, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transfer 64:759–772CrossRef Koga AA, Lopes ECC, Nova HFV, De Lima CR, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transfer 64:759–772CrossRef
Zurück zum Zitat Kontoleontos E, Papoutsis-Kiachagias E, Zymaris A, Papadimitriou D, Giannakoglou K (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Optim 45(8):941–961MathSciNetCrossRef Kontoleontos E, Papoutsis-Kiachagias E, Zymaris A, Papadimitriou D, Giannakoglou K (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Optim 45(8):941–961MathSciNetCrossRef
Zurück zum Zitat Pollini N, Sigmund O, Andreasen CS, Alexandersen J (2020) A “poor man’s” approach for high-resolution three-dimensional topology design for natural convection problems. Adv Eng Softw 140:102736CrossRef Pollini N, Sigmund O, Andreasen CS, Alexandersen J (2020) A “poor man’s” approach for high-resolution three-dimensional topology design for natural convection problems. Adv Eng Softw 140:102736CrossRef
Zurück zum Zitat Qiao H (2006) A systematic computer-aided approach to cooling system optimal design in plastic injection molding. Int J Mech Sci 48(4):430–439CrossRef Qiao H (2006) A systematic computer-aided approach to cooling system optimal design in plastic injection molding. Int J Mech Sci 48(4):430–439CrossRef
Zurück zum Zitat Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press
Zurück zum Zitat Sethian JA, Vladimirsky A (2000) Fast methods for the eikonal and related hamilton–jacobi equations on unstructured meshes. Proc Natl Acad Sci 97(11):5699–5703MathSciNetCrossRef Sethian JA, Vladimirsky A (2000) Fast methods for the eikonal and related hamilton–jacobi equations on unstructured meshes. Proc Natl Acad Sci 97(11):5699–5703MathSciNetCrossRef
Zurück zum Zitat Tan MHY, Najafi AR, Pety SJ, White SR, Geubelle PH (2016) Gradient-based design of actively-cooled microvascular composite panels. Int J Heat Mass Transfer 103:594–606CrossRef Tan MHY, Najafi AR, Pety SJ, White SR, Geubelle PH (2016) Gradient-based design of actively-cooled microvascular composite panels. Int J Heat Mass Transfer 103:594–606CrossRef
Zurück zum Zitat Wang G, Zhao G, Li H, Guan Y (2011) Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization. Expert Syst Appl 38(6):6705–6719CrossRef Wang G, Zhao G, Li H, Guan Y (2011) Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization. Expert Syst Appl 38(6):6705–6719CrossRef
Zurück zum Zitat Wu J, Aage N, Westermann R, Sigmund O (2017) Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE Trans Vis Comput Graph 24(2):1127–1140CrossRef Wu J, Aage N, Westermann R, Sigmund O (2017) Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE Trans Vis Comput Graph 24(2):1127–1140CrossRef
Zurück zum Zitat Wu T, Tovar A (2018) Design for additive manufacturing of conformal cooling channels using thermal-fluid topology optimization and application in injection molds. In: ASME 2018 International design engineering technical conferences and computers and information in engineering conference, pp v02BT03a007–v02BT03a007. American Society of Mechanical Engineers Wu T, Tovar A (2018) Design for additive manufacturing of conformal cooling channels using thermal-fluid topology optimization and application in injection molds. In: ASME 2018 International design engineering technical conferences and computers and information in engineering conference, pp v02BT03a007–v02BT03a007. American Society of Mechanical Engineers
Zurück zum Zitat Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a coupled thermal–fluid problem using level set boundary expressions. Int J Heat Mass Transfer 81:878–888CrossRef Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a coupled thermal–fluid problem using level set boundary expressions. Int J Heat Mass Transfer 81:878–888CrossRef
Zurück zum Zitat Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233CrossRef Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233CrossRef
Zurück zum Zitat Yoon GH (2016) Topology optimization for turbulent flow with spalart–allmaras model. Comput Methods Appl Mech Eng 303:288–311MathSciNetCrossRef Yoon GH (2016) Topology optimization for turbulent flow with spalart–allmaras model. Comput Methods Appl Mech Eng 303:288–311MathSciNetCrossRef
Zurück zum Zitat Zhao X, Zhou M, Sigmund O, Andreasen CS (2018) A “poor man’s approach” to topology optimization of cooling channels based on a darcy flow model. Int J Heat Mass Transfer 116:1108–1123CrossRef Zhao X, Zhou M, Sigmund O, Andreasen CS (2018) A “poor man’s approach” to topology optimization of cooling channels based on a darcy flow model. Int J Heat Mass Transfer 116:1108–1123CrossRef
Zurück zum Zitat Zhao X, Zhou M, Liu Y, Ding M, Hu P, Zhu P (2019) Topology optimization of channel cooling structures considering thermohmechanical behavior. Struct Multidiscip Optim 59(2):613–632MathSciNetCrossRef Zhao X, Zhou M, Liu Y, Ding M, Hu P, Zhu P (2019) Topology optimization of channel cooling structures considering thermohmechanical behavior. Struct Multidiscip Optim 59(2):613–632MathSciNetCrossRef
Metadaten
Titel
Level set topology optimization of cooling channels using the Darcy flow model
verfasst von
Sandilya Kambampati
H. Alicia Kim
Publikationsdatum
11.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-019-02482-6

Weitere Artikel der Ausgabe 4/2020

Structural and Multidisciplinary Optimization 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.