Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 11/2017

05.05.2017 | Original Article

Homogenous scaffold-based cranial/skull implant modelling and structural analysis—unit cell algorithm-meshless approach

verfasst von: V Phanindra Bogu, Y Ravi Kumar, Asit Kumar Khanra

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This computational study explores a unique modelling approach of the cranial implant, homogenous scaffold algorithm and meshless method, respectively. This meshless method is employed to review the implant underneath intracranial pressure (ICP) conditions with a standard ICP range of 7 mm of Hg to 15 mm of Hg. The algorithm is used to introduce uniform porosity within the implant enabling the implant behaviour with respect to ICP conditions. However, increase in the porosity leads to variation in deformation and equivalent stress, respectively. The meshless approach provides a valuable insight in order to know the effect of total deformation and equivalent stress (von Mises stress) and replaces the standard meshing strategies. The patient CT data (computed tomography) is processed in MIMICS software to get the mesh model. An entirely unique modelling approach is developed to model the cranial implant with the assistance of the Rhinoceros software. This modelling methodology is the easiest one and addressing both the symmetrical and asymmetrical defects. The implant is embedded in a unit cell-based porous structure with the help of an algorithm, and this algorithm is simple to manage the consistency in porosity and pore size of the scaffold. Totally six types of implants are modelled with variation in porosity and replicate the original cranial bone. Among six implants, Type 2 (porosity 82.62%) and Type 5 (porosity 45.73%) implants are analysed with the meshless approach under ICP. The total deformation and equivalent stress (von Mises stress) of porous implants are compared with the solid implant under same ICP conditions. Consequently, distinctive materials are used for structural analysis such as titanium alloy (Ti6Al4V) and polyether-ether-ketone (PEEK), respectively. The deformation and equivalent stress (von Mises stress) results are obtained through the structural analysis. It was observed from the results that the titanium-based solid implant is the best implant in all aspects, while considering weight and osseointegration PEEK-based Type 5 implant is the best one. A novel free-form closed curve network (FCN) technique is successfully developed to model a cranial implant for symmetrical and asymmetrical defects. The porous implant is adequately modelled through the unit cell algorithm and analysed through meshless approach. The implementation of 3D printed component will allow physicians to gain knowledge and successfully plan the preoperative surgery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hieu LC, Bohez E, Vander Sloten J, Phien HN, Vatcharaporn E, Binsh PH, An PV, Oris P (2003) Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyp J 9(3):175–186CrossRef Hieu LC, Bohez E, Vander Sloten J, Phien HN, Vatcharaporn E, Binsh PH, An PV, Oris P (2003) Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyp J 9(3):175–186CrossRef
2.
Zurück zum Zitat O’Reilly EB, Barnett S, Madden C, Welch B, Mickey B, Rozen S (2015) Computed-tomography modeled polyether-ether-ketone (PEEK) implants in revision cranioplasty. J Plast Recon Str Aesthet Surg 68(3):329–338CrossRef O’Reilly EB, Barnett S, Madden C, Welch B, Mickey B, Rozen S (2015) Computed-tomography modeled polyether-ether-ketone (PEEK) implants in revision cranioplasty. J Plast Recon Str Aesthet Surg 68(3):329–338CrossRef
3.
Zurück zum Zitat Ridwan-Pramana A, Marcián P, Borák L, Narra N, Forouzanfar T, Wolff J (2016) Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty a finite element study. J Cranio Maxilla Fac Surg 44(1):34–44CrossRef Ridwan-Pramana A, Marcián P, Borák L, Narra N, Forouzanfar T, Wolff J (2016) Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty a finite element study. J Cranio Maxilla Fac Surg 44(1):34–44CrossRef
4.
Zurück zum Zitat Chacón-Moya E, Gallegos-Hernández JF, Piña-Cabrales S, Cohn-Zurita F, Goné-Fernández A (2009) Cranial vault reconstruction using computer-designed polyetheretherketone (PEEK) implant: case report. Cir Cir 77(6):437–440PubMed Chacón-Moya E, Gallegos-Hernández JF, Piña-Cabrales S, Cohn-Zurita F, Goné-Fernández A (2009) Cranial vault reconstruction using computer-designed polyetheretherketone (PEEK) implant: case report. Cir Cir 77(6):437–440PubMed
5.
Zurück zum Zitat Chen JJ, Liu W, Li MZ, Wang CT (2006) Digital manufacture of titanium prosthesis for cranioplasty. Int J Adv Manuf Technol 27(11):1148–1152CrossRef Chen JJ, Liu W, Li MZ, Wang CT (2006) Digital manufacture of titanium prosthesis for cranioplasty. Int J Adv Manuf Technol 27(11):1148–1152CrossRef
6.
Zurück zum Zitat El Halabi F, Rodriguez JF, Rebolledo L, Hurtos E, Doblare M (2011) Mechanical characterization and numerical simulation of polyether–ether–ketone (PEEK) cranial implants. J Mech Behav Biomed Mater 4(8):1819–1832CrossRefPubMed El Halabi F, Rodriguez JF, Rebolledo L, Hurtos E, Doblare M (2011) Mechanical characterization and numerical simulation of polyether–ether–ketone (PEEK) cranial implants. J Mech Behav Biomed Mater 4(8):1819–1832CrossRefPubMed
7.
Zurück zum Zitat Jardini AL, Larosa MA, Maciel Filho R, Zavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P (2014) Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J. Cranio. Maxilla. Fac. Surg. 42(8):1877–1884CrossRef Jardini AL, Larosa MA, Maciel Filho R, Zavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P (2014) Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J. Cranio. Maxilla. Fac. Surg. 42(8):1877–1884CrossRef
8.
Zurück zum Zitat Phanindra Bogu V, Ravi Kumar Y, Asit Kumar K (2016) Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities. ABB 19(1):125–131 Phanindra Bogu V, Ravi Kumar Y, Asit Kumar K (2016) Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities. ABB 19(1):125–131
9.
Zurück zum Zitat Poukens J, Laeven P, Beerens M, Nijenhuis G, Sloten JV, Stoelinga P, Kessler P (2008) A classification of cranial implants based on the degree of difficulty in computer design and manufacture. Int J Med Robot 4(1):46–50CrossRefPubMed Poukens J, Laeven P, Beerens M, Nijenhuis G, Sloten JV, Stoelinga P, Kessler P (2008) A classification of cranial implants based on the degree of difficulty in computer design and manufacture. Int J Med Robot 4(1):46–50CrossRefPubMed
10.
Zurück zum Zitat Marieb RN, Wilhelm PB, Mallatt J (2012) Human anatomy, sixth edn. Pearson, San Francisco Marieb RN, Wilhelm PB, Mallatt J (2012) Human anatomy, sixth edn. Pearson, San Francisco
11.
Zurück zum Zitat Martin FH, Timmons MJ, Tallitsch RB (2012) Human anatomy, second edn. Pearson, USA Martin FH, Timmons MJ, Tallitsch RB (2012) Human anatomy, second edn. Pearson, USA
12.
Zurück zum Zitat Boruah S, Paskoff GR, Shender BS, Subit DL, Salzar RS, Crandall JR (2015) Variation of bone layer thicknesses and trabecular volume fraction in the adult male human calvarium. Bone 77:120–134CrossRefPubMed Boruah S, Paskoff GR, Shender BS, Subit DL, Salzar RS, Crandall JR (2015) Variation of bone layer thicknesses and trabecular volume fraction in the adult male human calvarium. Bone 77:120–134CrossRefPubMed
13.
Zurück zum Zitat Lillie EM, Urban JE, Weaver AA, Powers AK, Stitzel JD (2014) Estimation of the skull table thickness with clinical CT and validation with micro CT. J Anat 226(1):73–80CrossRefPubMedPubMedCentral Lillie EM, Urban JE, Weaver AA, Powers AK, Stitzel JD (2014) Estimation of the skull table thickness with clinical CT and validation with micro CT. J Anat 226(1):73–80CrossRefPubMedPubMedCentral
14.
15.
Zurück zum Zitat Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502CrossRefPubMedPubMedCentral Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Tim VC, Jan S, Hans VO, Jos VS (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Bio Eng Comput 44:517–525CrossRef Tim VC, Jan S, Hans VO, Jos VS (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Bio Eng Comput 44:517–525CrossRef
17.
Zurück zum Zitat Kwon DY, Kwon JS, Park SH, Park JH, Jang SH, Yin XY, Yun JH, Kim JH, Min BH, Lee JH, Kim WD, Kim MS (2015) A computer designed scaffold for bone regeneration with cranial defect using human dental pulp stem cells. Sci Rep 5:12721CrossRefPubMed Kwon DY, Kwon JS, Park SH, Park JH, Jang SH, Yin XY, Yun JH, Kim JH, Min BH, Lee JH, Kim WD, Kim MS (2015) A computer designed scaffold for bone regeneration with cranial defect using human dental pulp stem cells. Sci Rep 5:12721CrossRefPubMed
18.
Zurück zum Zitat Petrie Aronin CE, Sadik KW, Lay AL, Rion DB, Tholpady SS, Ogle RC, Botchwey EA (2009) Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J Biomed Mater Res A 89(3):632–641CrossRefPubMedPubMedCentral Petrie Aronin CE, Sadik KW, Lay AL, Rion DB, Tholpady SS, Ogle RC, Botchwey EA (2009) Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J Biomed Mater Res A 89(3):632–641CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Simske SJ, Sachdeva R (1995) Cranial bone apposition and ingrowth in a porous nickel-titanium implant. J Biomed Mater Res 29(4):527–533CrossRefPubMed Simske SJ, Sachdeva R (1995) Cranial bone apposition and ingrowth in a porous nickel-titanium implant. J Biomed Mater Res 29(4):527–533CrossRefPubMed
20.
Zurück zum Zitat Brimioulle S, Moraine JJ, Norrenberg D, Kahn RJ (1997) Effects of positioning and exercise on intracranial pressure in a neurosurgical intensive care unit. Phys Ther 77(12):1682–1689CrossRefPubMed Brimioulle S, Moraine JJ, Norrenberg D, Kahn RJ (1997) Effects of positioning and exercise on intracranial pressure in a neurosurgical intensive care unit. Phys Ther 77(12):1682–1689CrossRefPubMed
21.
Zurück zum Zitat Steiner LA, Andrews PJD (2006) Monitoring the injured brain: ICP and CBF. Br J Anaesth 97(1):26–38CrossRefPubMed Steiner LA, Andrews PJD (2006) Monitoring the injured brain: ICP and CBF. Br J Anaesth 97(1):26–38CrossRefPubMed
22.
Zurück zum Zitat Freytag M, Shapiro V, Tsukanov I (2001) Finite element analysis in situ. Finite Elem Anal Des 47(9):957–972CrossRef Freytag M, Shapiro V, Tsukanov I (2001) Finite element analysis in situ. Finite Elem Anal Des 47(9):957–972CrossRef
23.
Zurück zum Zitat Kosta T, Tsukanov I (2014) Three-dimensional natural vibration analysis with meshfree solution structure method. ASME Journal of Vibration and Acoustics 136:51007–51001CrossRef Kosta T, Tsukanov I (2014) Three-dimensional natural vibration analysis with meshfree solution structure method. ASME Journal of Vibration and Acoustics 136:51007–51001CrossRef
24.
Zurück zum Zitat Gasparini R, Kosta T, Tsukanov I (2013) Engineering analysis in imprecise geometric models. Finite Elem Anal Des 66:96–109CrossRef Gasparini R, Kosta T, Tsukanov I (2013) Engineering analysis in imprecise geometric models. Finite Elem Anal Des 66:96–109CrossRef
25.
Zurück zum Zitat Nelaturi S, Shapiro V (2015) Representation and analysis of additively manufactured parts. Comput Aided Des 67-68:13–23CrossRef Nelaturi S, Shapiro V (2015) Representation and analysis of additively manufactured parts. Comput Aided Des 67-68:13–23CrossRef
26.
Zurück zum Zitat Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, Kurth JP, Schrooten J (2012) The effect of pore geometry on the in vitro biological behavior of human periosteum-derived seeded on selective laser-method Ti6Al4V bone scaffolds. Acta Biomater 8(7):2824–2834CrossRefPubMed Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, Kurth JP, Schrooten J (2012) The effect of pore geometry on the in vitro biological behavior of human periosteum-derived seeded on selective laser-method Ti6Al4V bone scaffolds. Acta Biomater 8(7):2824–2834CrossRefPubMed
27.
Zurück zum Zitat Chantarapanich N, Puttawibull P, Sucharitpwatskul S, Jeamwatthanachai P, Inglam S, Sitthiseripratip K (2012) Scaffold library for tissue engineering: a geometric evaluation. Comput Math Methods Med. doi:10.1155/2012/407805 Chantarapanich N, Puttawibull P, Sucharitpwatskul S, Jeamwatthanachai P, Inglam S, Sitthiseripratip K (2012) Scaffold library for tissue engineering: a geometric evaluation. Comput Math Methods Med. doi:10.​1155/​2012/​407805
28.
Zurück zum Zitat Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2012) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopedic implants. A review Biomaterials 83:127–141CrossRef Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2012) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopedic implants. A review Biomaterials 83:127–141CrossRef
29.
Zurück zum Zitat Griffin MJ (2001) The validation of biodynamic models. Clin. Biomech (Bristol, Avon). 16(1):S81–S92CrossRefPubMed Griffin MJ (2001) The validation of biodynamic models. Clin. Biomech (Bristol, Avon). 16(1):S81–S92CrossRefPubMed
30.
Zurück zum Zitat Viceconti M, Olsen S, Nolte LP, Burton K (2005) Extracting clinically relevant data from finite element simulations. Clin Biomech (Bristol, Avon) 20(5):451–454CrossRef Viceconti M, Olsen S, Nolte LP, Burton K (2005) Extracting clinically relevant data from finite element simulations. Clin Biomech (Bristol, Avon) 20(5):451–454CrossRef
Metadaten
Titel
Homogenous scaffold-based cranial/skull implant modelling and structural analysis—unit cell algorithm-meshless approach
verfasst von
V Phanindra Bogu
Y Ravi Kumar
Asit Kumar Khanra
Publikationsdatum
05.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 11/2017
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1649-3

Weitere Artikel der Ausgabe 11/2017

Medical & Biological Engineering & Computing 11/2017 Zur Ausgabe

Premium Partner