Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2020

12.08.2020

Hot Deformation Behavior of a High-Mn Austenitic Steel for Cryogenic Liquified Natural Gas Applications

verfasst von: Yong Chen, Xiao-Ming Zhang, Zhi-Hui Cai, Hua Ding, Ming-ming Pan, Heng-Sen Li

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hot deformation behavior of a high-Mn austenitic steel was investigated employing hot compression tests at different temperatures and strain rates. The flow behavior related to deformation temperature and strain rate was analyzed. Microstructures and grain boundary characteristics of the deformed specimens quenched at selected conditions were examined using SEM-EBSD. It was observed that the flow stress and critical characteristic parameters were sensitive to deformation temperature and strain rate. Grain boundary bulging was the main nucleation mechanism which signified discontinuous dynamic recrystallization played a vital role in microstructure evolution. Strain rate had a complex influence on DRX kinetics and the formation of Σ3 boundaries. At high strain rates, the higher stored energy and adiabatic temperature rise induced the boundary to migrate at a higher velocity, thus accelerating the nucleation of DRX grains and increasing the frequency of twinning. At low strain rates, longer time was available for grain boundary migration which facilitated the growth of DRX grains and the nucleation of annealing twins. However, at intermediate strain rates, sluggish recrystallization kinetics and annealing twins evolution were observed as the stored energy was not sufficiently high and the time available for grain boundary migration was also fairly short.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Kumar, H.T. Kwon, K.H. Choi, J.H. Cho, W. Lim, and I. Moon, Current Status and Future Projections of LNG Demand and Supplies: A Global Prospective, Energy Policy, 2011, 39, p 4097–4104 S. Kumar, H.T. Kwon, K.H. Choi, J.H. Cho, W. Lim, and I. Moon, Current Status and Future Projections of LNG Demand and Supplies: A Global Prospective, Energy Policy, 2011, 39, p 4097–4104
2.
Zurück zum Zitat K. Han, J. Yoo, B. Lee, I. Han, and C. Lee, Effect of Ni on the Hot Ductility and Hot Cracking Susceptibility of High Mn Austenitic Cast Steel, Mater. Sci. Eng. A, 2014, 618, p 295–304 K. Han, J. Yoo, B. Lee, I. Han, and C. Lee, Effect of Ni on the Hot Ductility and Hot Cracking Susceptibility of High Mn Austenitic Cast Steel, Mater. Sci. Eng. A, 2014, 618, p 295–304
3.
Zurück zum Zitat S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Effects of Mn and Al Contents on Cryogenic-Temperature Tensile and Charpy Impact Properties in Four Austenitic High-Mn Steels, Acta Mater., 2015, 100, p 39–52 S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Effects of Mn and Al Contents on Cryogenic-Temperature Tensile and Charpy Impact Properties in Four Austenitic High-Mn Steels, Acta Mater., 2015, 100, p 39–52
4.
Zurück zum Zitat J. Lee, S.S. Sohn, S. Hong, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Effects of Mn Addition on Tensile and Charpy Impact Properties in Austenitic Fe-Mn-C-Al-Based Steels for Cryogenic Applications, Metall. Mater. Trans. A, 2014, 45, p 5419–5430 J. Lee, S.S. Sohn, S. Hong, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Effects of Mn Addition on Tensile and Charpy Impact Properties in Austenitic Fe-Mn-C-Al-Based Steels for Cryogenic Applications, Metall. Mater. Trans. A, 2014, 45, p 5419–5430
5.
Zurück zum Zitat O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Hot Deformation of a Fe-Mn-Al-C Steel Susceptible of κ-Carbide Precipitation, Mater. Sci. Eng. A, 2017, 689, p 269–285 O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Hot Deformation of a Fe-Mn-Al-C Steel Susceptible of κ-Carbide Precipitation, Mater. Sci. Eng. A, 2017, 689, p 269–285
6.
Zurück zum Zitat X. Li, R.B. Song, T. Kang, and N.P. Zhou, Hot Deformation and Dynamic Recrystallization Behavior of Fe-8Mn-6Al-0.2C Steel, Mater. Sci. Forum, 2017, 898, p 797–802 X. Li, R.B. Song, T. Kang, and N.P. Zhou, Hot Deformation and Dynamic Recrystallization Behavior of Fe-8Mn-6Al-0.2C Steel, Mater. Sci. Forum, 2017, 898, p 797–802
7.
Zurück zum Zitat Z. Wang, X.N. Wang, and Z.S. Zhu, Characterization of High-Temperature Deformation Behavior and Processing Map of TB17 Titanium Alloy, J. Alloys Compd., 2017, 692, p 149–154 Z. Wang, X.N. Wang, and Z.S. Zhu, Characterization of High-Temperature Deformation Behavior and Processing Map of TB17 Titanium Alloy, J. Alloys Compd., 2017, 692, p 149–154
8.
Zurück zum Zitat L. Ou, Z.Q. Zheng, Y.F. Nie, and H.G. Jian, Hot Deformation Behavior of 2060 Alloy, J. Alloys Compd., 2015, 648, p 681–689 L. Ou, Z.Q. Zheng, Y.F. Nie, and H.G. Jian, Hot Deformation Behavior of 2060 Alloy, J. Alloys Compd., 2015, 648, p 681–689
9.
Zurück zum Zitat N. Nayan, S.V.S.N. Murty, S. Chhangani, A. Prakash, M.J.N.V. Prasad, and I. Samajdar, Effect of Temperature and Strain Rate on Hot Deformation Behavior and Microstructure of Al-Cu-Li Alloy, J. Alloys Compd., 2017, 723, p 548–558 N. Nayan, S.V.S.N. Murty, S. Chhangani, A. Prakash, M.J.N.V. Prasad, and I. Samajdar, Effect of Temperature and Strain Rate on Hot Deformation Behavior and Microstructure of Al-Cu-Li Alloy, J. Alloys Compd., 2017, 723, p 548–558
10.
Zurück zum Zitat K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275 K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275
11.
Zurück zum Zitat S. Mandal, A.K. Bhaduri, and V.S. Sarma, Influence of State of Stress on Dynamic Recrystallization in a Titanium-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 410–414 S. Mandal, A.K. Bhaduri, and V.S. Sarma, Influence of State of Stress on Dynamic Recrystallization in a Titanium-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 410–414
12.
Zurück zum Zitat D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, and V.S. Sarma, New Insights into the Relationship Between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless Steel, Mater. Sci. Eng. A, 2014, 598, p 368–375 D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, and V.S. Sarma, New Insights into the Relationship Between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless Steel, Mater. Sci. Eng. A, 2014, 598, p 368–375
13.
Zurück zum Zitat Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258 Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258
14.
Zurück zum Zitat D.J. Li, Y.R. Feng, Z.F. Yin, F.S. Shangguan, K. Wang, Q. Liu, and F. Hu, Prediction of Hot Deformation Behaviour of Fe–25Mn–3Si–3Al TWIP Steel, Mater. Sci. Eng. A, 2011, 528, p 8084–8089 D.J. Li, Y.R. Feng, Z.F. Yin, F.S. Shangguan, K. Wang, Q. Liu, and F. Hu, Prediction of Hot Deformation Behaviour of Fe–25Mn–3Si–3Al TWIP Steel, Mater. Sci. Eng. A, 2011, 528, p 8084–8089
15.
Zurück zum Zitat A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-25.Si-1.5Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78 A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari, The Prediction of Hot Deformation Behavior in Fe-21Mn-25.Si-1.5Al Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2012, 554, p 72–78
16.
Zurück zum Zitat B. Wietbrock, W. Xiong, M. Bambach, and G. Hirt, Effect of Temperature, Strain Rate, Manganese and Carbon Content on Flow Behavior of Three Ternary Fe-Mn-C (Fe-Mn23-C0.3, Fe-Mn23-C0.6, Fe-Mn28-C0.3) High-Manganese Steels, Steel res. Int., 2011, 82, p 63–69 B. Wietbrock, W. Xiong, M. Bambach, and G. Hirt, Effect of Temperature, Strain Rate, Manganese and Carbon Content on Flow Behavior of Three Ternary Fe-Mn-C (Fe-Mn23-C0.3, Fe-Mn23-C0.6, Fe-Mn28-C0.3) High-Manganese Steels, Steel res. Int., 2011, 82, p 63–69
17.
Zurück zum Zitat A.S. Hamada, L.P. Karjalainen, and M.C. Somani, The Influence of Aluminum on Hot Deformation Behavior and Tensile Properties of High-Mn TWIP Steels, Mater. Sci. Eng. A, 2007, 467, p 114–124 A.S. Hamada, L.P. Karjalainen, and M.C. Somani, The Influence of Aluminum on Hot Deformation Behavior and Tensile Properties of High-Mn TWIP Steels, Mater. Sci. Eng. A, 2007, 467, p 114–124
18.
Zurück zum Zitat F. Reyes-Calderón, I. Mejía, A. Boulaajaj, and J.M. Cabrera, Effect of Microalloying Elements (Nb, V and Ti) on the Hot Flow Behavior of High-Mn Austenitic Twinning Induced Plasticity (TWIP) Steel, Mater. Sci. Eng. A, 2013, 560, p 552–560 F. Reyes-Calderón, I. Mejía, A. Boulaajaj, and J.M. Cabrera, Effect of Microalloying Elements (Nb, V and Ti) on the Hot Flow Behavior of High-Mn Austenitic Twinning Induced Plasticity (TWIP) Steel, Mater. Sci. Eng. A, 2013, 560, p 552–560
19.
Zurück zum Zitat I. Mejía, F. Reyes-Calderón, and J.M. Cabrera, Modeling the Hot Flow Behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIP Steel Microalloyed with Ti, V and Nb, Mater. Sci. Eng. A, 2015, 644, p 374–385 I. Mejía, F. Reyes-Calderón, and J.M. Cabrera, Modeling the Hot Flow Behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIP Steel Microalloyed with Ti, V and Nb, Mater. Sci. Eng. A, 2015, 644, p 374–385
20.
Zurück zum Zitat T. Sakai and J.J. Jonas, Overview no. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209 T. Sakai and J.J. Jonas, Overview no. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209
21.
Zurück zum Zitat H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387–389, p 203–208 H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387–389, p 203–208
22.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Elsevier Science Ltd., Oxford, UK, 1995, p 415–429 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Elsevier Science Ltd., Oxford, UK, 1995, p 415–429
23.
Zurück zum Zitat S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan, Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184 S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan, Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184
24.
Zurück zum Zitat N.D. Ryan and H.J. Mcqueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process. Technol., 1990, 21, p 177–199 N.D. Ryan and H.J. Mcqueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process. Technol., 1990, 21, p 177–199
25.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136 E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136
26.
Zurück zum Zitat I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera, Determination of the Critical Conditions for the Initiation of Dynamic Recrystallization in Boron Microalloyed Steels, Mater. Sci. Eng. A, 2011, 528, p 4133–4140 I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera, Determination of the Critical Conditions for the Initiation of Dynamic Recrystallization in Boron Microalloyed Steels, Mater. Sci. Eng. A, 2011, 528, p 4133–4140
27.
Zurück zum Zitat J.Q. Zhang, H.S. Di, and X.Y. Wang, Flow Softening of 253 MA Austenitic Stainless Steel During Hot Compression at Higher Strain Rates, Mater. Sci. Eng. A, 2016, 650, p 483–491 J.Q. Zhang, H.S. Di, and X.Y. Wang, Flow Softening of 253 MA Austenitic Stainless Steel During Hot Compression at Higher Strain Rates, Mater. Sci. Eng. A, 2016, 650, p 483–491
28.
Zurück zum Zitat W. Roberts and B. Ahlblom, A Nucleation Criterion for Dynamic Recrystallization During Hot Working, Acta Metall., 1978, 26, p 801–813 W. Roberts and B. Ahlblom, A Nucleation Criterion for Dynamic Recrystallization During Hot Working, Acta Metall., 1978, 26, p 801–813
29.
Zurück zum Zitat S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L (N), Metall. Mater. Trans. A, 2014, 45, p 5645–5656 S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L (N), Metall. Mater. Trans. A, 2014, 45, p 5645–5656
30.
Zurück zum Zitat D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson, Modelling Discontinuous Dynamic Recrystallization Using a Physically Based Model for Nucleation, Acta Mater., 2009, 57, p 5218–5228 D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson, Modelling Discontinuous Dynamic Recrystallization Using a Physically Based Model for Nucleation, Acta Mater., 2009, 57, p 5218–5228
31.
Zurück zum Zitat C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci. J., 1979, 13, p 187–194 C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci. J., 1979, 13, p 187–194
32.
Zurück zum Zitat H.L. Wei, G.Q. Liu, X. Xiao, H.T. Zhao, H. Ding, and R.M. Kang, Characterization of Hot Deformation Behavior of a New Microalloyed C-Mn-Al High-Strength Steel, Mater. Sci. Eng. A, 2013, 564, p 140–146 H.L. Wei, G.Q. Liu, X. Xiao, H.T. Zhao, H. Ding, and R.M. Kang, Characterization of Hot Deformation Behavior of a New Microalloyed C-Mn-Al High-Strength Steel, Mater. Sci. Eng. A, 2013, 564, p 140–146
33.
Zurück zum Zitat M. Ueki, S. Horie, and T. Nakamura, Factors Affecting Dynamic Recrystallization of Metals and Alloys, Mater. Sci. Technol., 1987, 3, p 329–337 M. Ueki, S. Horie, and T. Nakamura, Factors Affecting Dynamic Recrystallization of Metals and Alloys, Mater. Sci. Technol., 1987, 3, p 329–337
34.
Zurück zum Zitat W. Gao, A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization of Copper Polycrystals with Different Purities, Mater. Sci. Eng. A, 1999, 265, p 233–239 W. Gao, A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization of Copper Polycrystals with Different Purities, Mater. Sci. Eng. A, 1999, 265, p 233–239
35.
Zurück zum Zitat A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485, p 664–672 A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485, p 664–672
36.
Zurück zum Zitat Rajeshwar R. Eleti, Tilak Bhattacharjee, Lijia Zhao, Pinaki P. Bhattacharjee, and Nobuhiro Tsuji, Hot Deformation Behavior of CoCrFeMnNi FCC High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 176–186 Rajeshwar R. Eleti, Tilak Bhattacharjee, Lijia Zhao, Pinaki P. Bhattacharjee, and Nobuhiro Tsuji, Hot Deformation Behavior of CoCrFeMnNi FCC High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 176–186
37.
Zurück zum Zitat K. Yamanaka, M. Mori, S. Kurosu, H. Matsumoto, and A. Chiba, Ultrafine Grain Refinement of Biomedical Co-29Cr-6Mo Alloy During Conventional Hot-Compression Deformation, Metall. Mater. Trans. A, 2009, 40, p 1980–1994 K. Yamanaka, M. Mori, S. Kurosu, H. Matsumoto, and A. Chiba, Ultrafine Grain Refinement of Biomedical Co-29Cr-6Mo Alloy During Conventional Hot-Compression Deformation, Metall. Mater. Trans. A, 2009, 40, p 1980–1994
38.
Zurück zum Zitat D.G. Brandon, The Structure of High-Angle Grain Boundaries, Acta Metall., 1966, 14, p 1479–1484 D.G. Brandon, The Structure of High-Angle Grain Boundaries, Acta Metall., 1966, 14, p 1479–1484
39.
Zurück zum Zitat V. Randle, A Methodology for Grain Boundary Plane Assessment by Single-Section Trace Analysis, Scr. Mater., 2001, 44, p 2789–2794 V. Randle, A Methodology for Grain Boundary Plane Assessment by Single-Section Trace Analysis, Scr. Mater., 2001, 44, p 2789–2794
40.
Zurück zum Zitat D.M. Saylor, B.S. El-Dasher, B.L. Adams, and G.S. Rohrer, Measuring the Five-Parameter Grain-Boundary Distribution from Observations of Planar Sections, Metall. Mater. Trans. A, 2004, 35, p 1981–1989 D.M. Saylor, B.S. El-Dasher, B.L. Adams, and G.S. Rohrer, Measuring the Five-Parameter Grain-Boundary Distribution from Observations of Planar Sections, Metall. Mater. Trans. A, 2004, 35, p 1981–1989
41.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, B. Raj, and V.S. Sarma, Grain Boundary Microstructural Control Through Thermomechanical Processing in a Titanium-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2008, 39, p 3298–3307 S. Mandal, P.V. Sivaprasad, B. Raj, and V.S. Sarma, Grain Boundary Microstructural Control Through Thermomechanical Processing in a Titanium-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2008, 39, p 3298–3307
42.
Zurück zum Zitat H. Gleiter, The Formation of Annealing Twins, Acta Metall., 1969, 17, p 1421–1428 H. Gleiter, The Formation of Annealing Twins, Acta Metall., 1969, 17, p 1421–1428
Metadaten
Titel
Hot Deformation Behavior of a High-Mn Austenitic Steel for Cryogenic Liquified Natural Gas Applications
verfasst von
Yong Chen
Xiao-Ming Zhang
Zhi-Hui Cai
Hua Ding
Ming-ming Pan
Heng-Sen Li
Publikationsdatum
12.08.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05011-5

Weitere Artikel der Ausgabe 8/2020

Journal of Materials Engineering and Performance 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.