Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2015

01.12.2015

Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-cast and Homogenized States

verfasst von: Liang Chen, Guoqun Zhao, Jie Gong, Xiaoxue Chen, Mengmeng Chen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The isothermal hot compression tests of as-cast and homogenized 2024 aluminum alloy were carried out under wide range of deformation temperatures (623-773 K) and strain rates (0.001-10 s−1). The constitutive equations for both initial states were established based on Arrhenius model, and the processing maps were constructed based on the dynamic material model. The results show that the flow stress of samples is evidently affected by both the strain rate and deformation temperature, and the flow stress in homogenized state is always higher than that in as-cast state. Through calculating the correlation coefficient (R) and average absolute relative error of the established constitutive equations, it indicates that Arrhenius model can only provide a rough estimation on the flow stress. However, a much more precise value of the flow stress was obtained by introducing the strain compensation into Arrhenius model, since the effects of strain on the material constants were well considered. Furthermore, according to the processing maps, a suggested range of deformation temperature and strain rate for hot forming process were given then: temperature range 710-773 K and strain rate range 0.001-1 s−1 for as-cast state, and temperature range 680-773 K and strain rate range 0.003-0.22 s−1 for homogenized state.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y.C. Lin, Y.C. Xia, X.S. Ma, Y.Q. Jiang, and M.S. Chen, High-Temperature Creep Behavior of Al-Cu-Mg Alloy, Mater. Sci. Eng., A, 2012, 550, p 125–130CrossRef Y.C. Lin, Y.C. Xia, X.S. Ma, Y.Q. Jiang, and M.S. Chen, High-Temperature Creep Behavior of Al-Cu-Mg Alloy, Mater. Sci. Eng., A, 2012, 550, p 125–130CrossRef
2.
Zurück zum Zitat H.R. Rezaei Ashtiani, M.H. Parsa, and H. Bisadi, Constitutive Equations for Elevated Temperature Flow Behavior of Commercial Purity Aluminum, Mater. Sci. Eng. A, 2012, 545, p 61–67CrossRef H.R. Rezaei Ashtiani, M.H. Parsa, and H. Bisadi, Constitutive Equations for Elevated Temperature Flow Behavior of Commercial Purity Aluminum, Mater. Sci. Eng. A, 2012, 545, p 61–67CrossRef
3.
Zurück zum Zitat L. Chen, G. Zhao, J. Yu, W. Zhang, and T. Wu, Analysis and Porthole Die Design for a Multi-hole Extrusion Process of a Hollow, Thin-Walled Aluminum Profile, Int. J. Adv. Manuf. Tech., 2014, 74, p 383–392CrossRef L. Chen, G. Zhao, J. Yu, W. Zhang, and T. Wu, Analysis and Porthole Die Design for a Multi-hole Extrusion Process of a Hollow, Thin-Walled Aluminum Profile, Int. J. Adv. Manuf. Tech., 2014, 74, p 383–392CrossRef
4.
Zurück zum Zitat C. Zhang, G. Zhao, H. Chen, Y. Guan, H. Cai, and B. Gao, Investigation on Effects of Die Orifice Layout on Three-Hole Porthole Extrusion of Aluminum Alloy 6063 Tubes, J. Mater. Eng. Perform., 2013, 22, p 1223–1232CrossRef C. Zhang, G. Zhao, H. Chen, Y. Guan, H. Cai, and B. Gao, Investigation on Effects of Die Orifice Layout on Three-Hole Porthole Extrusion of Aluminum Alloy 6063 Tubes, J. Mater. Eng. Perform., 2013, 22, p 1223–1232CrossRef
5.
Zurück zum Zitat H.S. Liu, J. Bao, Z.W. Xing, D.J. Zhang, B.Y. Song, and C.X. Lei, Modeling and FE Simulation of Quenchable High Strength Steels Sheet Metal Hot Forming Process, J. Mater. Eng. Perform., 2011, 20, p 894–902CrossRef H.S. Liu, J. Bao, Z.W. Xing, D.J. Zhang, B.Y. Song, and C.X. Lei, Modeling and FE Simulation of Quenchable High Strength Steels Sheet Metal Hot Forming Process, J. Mater. Eng. Perform., 2011, 20, p 894–902CrossRef
6.
Zurück zum Zitat Y.C. Lin, Y.Q. Jiang, H.M. Zhou, and G. Liu, A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures, J. Mater. Eng. Perform., 2014, 23, p 4350–4357CrossRef Y.C. Lin, Y.Q. Jiang, H.M. Zhou, and G. Liu, A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures, J. Mater. Eng. Perform., 2014, 23, p 4350–4357CrossRef
7.
Zurück zum Zitat Y. Deng, Z. Yin, and J. Huang, Hot Deformation Behavior and Microstructural Evolution of Homogenized 7050 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng., A, 2011, 528, p 1780–1786CrossRef Y. Deng, Z. Yin, and J. Huang, Hot Deformation Behavior and Microstructural Evolution of Homogenized 7050 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng., A, 2011, 528, p 1780–1786CrossRef
8.
Zurück zum Zitat M.A. Jabbari Taleghani, E.M. Ruiz Navas, M. Salehi, and J.M. Torralba, Hot Deformation Behaviour and Flow Stress Prediction of 7075 Aluminium Alloy Powder Compacts During Compression at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 534, p 624–631CrossRef M.A. Jabbari Taleghani, E.M. Ruiz Navas, M. Salehi, and J.M. Torralba, Hot Deformation Behaviour and Flow Stress Prediction of 7075 Aluminium Alloy Powder Compacts During Compression at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 534, p 624–631CrossRef
9.
Zurück zum Zitat L. Hua, F. Meng, Y. Song, J. Liu, X. Qin, and Lianbing Suo, A Constitutive Model of 6111-T4 Aluminum Alloy Sheet Based on the Warm Tensile Test, J. Mater. Eng. Perform., 2014, 23, p 1107–1113CrossRef L. Hua, F. Meng, Y. Song, J. Liu, X. Qin, and Lianbing Suo, A Constitutive Model of 6111-T4 Aluminum Alloy Sheet Based on the Warm Tensile Test, J. Mater. Eng. Perform., 2014, 23, p 1107–1113CrossRef
10.
Zurück zum Zitat Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy over a Wide Range of Temperature and Strain Rate, Comp. Mater. Sci., 2010, 50, p 227–233CrossRef Y.C. Lin, Y.C. Xia, X.M. Chen, and M.S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy over a Wide Range of Temperature and Strain Rate, Comp. Mater. Sci., 2010, 50, p 227–233CrossRef
11.
Zurück zum Zitat J.C. Shao, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Y. Liu, and K. Yang, Constitutive Flow Behavior and Hot Workability of Powder Metallurgy Processed 20vol.%SiCP/2024Al Composite, Mater. Sci. Eng., A, 2010, 527, p 7865–7872CrossRef J.C. Shao, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Y. Liu, and K. Yang, Constitutive Flow Behavior and Hot Workability of Powder Metallurgy Processed 20vol.%SiCP/2024Al Composite, Mater. Sci. Eng., A, 2010, 527, p 7865–7872CrossRef
12.
Zurück zum Zitat M.R. Rokni, A. Zarei-Hanzaki, C.A. Widener, and P. Changizian, The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy, J. Mater. Eng. Perform., 2014, 23, p 4002–4009CrossRef M.R. Rokni, A. Zarei-Hanzaki, C.A. Widener, and P. Changizian, The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy, J. Mater. Eng. Perform., 2014, 23, p 4002–4009CrossRef
13.
Zurück zum Zitat L. Chen, G. Zhao, J. Yu, and W. Zhang, Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process, Mater. Des., 2015, 66, p 129–136CrossRef L. Chen, G. Zhao, J. Yu, and W. Zhang, Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process, Mater. Des., 2015, 66, p 129–136CrossRef
14.
Zurück zum Zitat Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15A, p 1883–1892CrossRef Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15A, p 1883–1892CrossRef
15.
Zurück zum Zitat Y. Kong, P. Chang, Q. Li, L. Xie, and S. Zhu, Hot Deformation Characteristics and Processing Map of Nickel-Based C276 Superalloy, J. Alloys Comp., 2015, 622, p 738–744CrossRef Y. Kong, P. Chang, Q. Li, L. Xie, and S. Zhu, Hot Deformation Characteristics and Processing Map of Nickel-Based C276 Superalloy, J. Alloys Comp., 2015, 622, p 738–744CrossRef
16.
Zurück zum Zitat A.K. Maheshwari, K.K. Pathak, N. Ramakrishnan, and S.P. Narayan, Modified Johnson-Cook Material Flow Model for Hot Deformation Processing, J. Mater. Sci., 2009, 45, p 859–864CrossRef A.K. Maheshwari, K.K. Pathak, N. Ramakrishnan, and S.P. Narayan, Modified Johnson-Cook Material Flow Model for Hot Deformation Processing, J. Mater. Sci., 2009, 45, p 859–864CrossRef
17.
Zurück zum Zitat M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, J. Alloys Comp., 2011, 509, p 948–952CrossRef M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, J. Alloys Comp., 2011, 509, p 948–952CrossRef
18.
Zurück zum Zitat S. Banerjee, P.S. Robi, and A. Srinivasan, Deformation Processing Maps for Control of Microstructure in Al-Cu-Mg Alloys Microalloyed with Sn, Metall. Mater. Trans. A, 2012, 43, p 3834–3849CrossRef S. Banerjee, P.S. Robi, and A. Srinivasan, Deformation Processing Maps for Control of Microstructure in Al-Cu-Mg Alloys Microalloyed with Sn, Metall. Mater. Trans. A, 2012, 43, p 3834–3849CrossRef
19.
Zurück zum Zitat V. Senthilkumar, A. Balaji, and R. Narayanasamy, Analysis of Hot Deformation Behavior of Al 5083-TiC Nanocomposite Using Constitutive and Dynamic Material Models, Mater. Des., 2012, 37, p 102–110CrossRef V. Senthilkumar, A. Balaji, and R. Narayanasamy, Analysis of Hot Deformation Behavior of Al 5083-TiC Nanocomposite Using Constitutive and Dynamic Material Models, Mater. Des., 2012, 37, p 102–110CrossRef
20.
Zurück zum Zitat S.B. Bhimavarapu, A.K. Maheshwari, D. Bhargava, and S.P. Narayan, Compressive Deformation Behavior of Al 2024 Alloy Using 2D and 4D Processing Maps, J. Mater. Sci., 2011, 46, p 3191–3199CrossRef S.B. Bhimavarapu, A.K. Maheshwari, D. Bhargava, and S.P. Narayan, Compressive Deformation Behavior of Al 2024 Alloy Using 2D and 4D Processing Maps, J. Mater. Sci., 2011, 46, p 3191–3199CrossRef
21.
Zurück zum Zitat M. Wang, P. Jin, J. Wang, and L. Han, Hot Deformation Behavior of As-Quenched 7005 Aluminum Alloy, T. Nonferr. Metal. Soc., 2014, 24, p 2796–2804CrossRef M. Wang, P. Jin, J. Wang, and L. Han, Hot Deformation Behavior of As-Quenched 7005 Aluminum Alloy, T. Nonferr. Metal. Soc., 2014, 24, p 2796–2804CrossRef
22.
Zurück zum Zitat B.L. Xiao, J.Z. Fan, X.F. Tian, W.Y. Zhang, and L.K. Shi, Hot Deformation and Processing Map of 15%SiCp/2009 Al Composite, J. Mater. Sci., 2005, 40, p 5757–5762CrossRef B.L. Xiao, J.Z. Fan, X.F. Tian, W.Y. Zhang, and L.K. Shi, Hot Deformation and Processing Map of 15%SiCp/2009 Al Composite, J. Mater. Sci., 2005, 40, p 5757–5762CrossRef
23.
Zurück zum Zitat J.C. Malas, S. Venugopal, and T. Seshacharyulu, Effect of Microstructural Complexity on the Hot Deformation Behavior of Aluminum Alloy 2024, Mater. Sci. Eng., A, 2008, 368, p 41–47CrossRef J.C. Malas, S. Venugopal, and T. Seshacharyulu, Effect of Microstructural Complexity on the Hot Deformation Behavior of Aluminum Alloy 2024, Mater. Sci. Eng., A, 2008, 368, p 41–47CrossRef
24.
Zurück zum Zitat G.R. Ebrahimi, A. Zarei-Hanzaki, M. Haghshenas, and H. Arabshahi, The Effect of Heat Treatment on Hot Deformation Behaviour of Al 2024, J. Mater. Process. Technol., 2008, 206, p 25–29CrossRef G.R. Ebrahimi, A. Zarei-Hanzaki, M. Haghshenas, and H. Arabshahi, The Effect of Heat Treatment on Hot Deformation Behaviour of Al 2024, J. Mater. Process. Technol., 2008, 206, p 25–29CrossRef
25.
Zurück zum Zitat A.R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk, Evolution of Grain Boundary Phases During the Homogenization of AA7020 Aluminum Alloy, Metall. Mater. Trans. A, 2009, 40, p 717–728CrossRef A.R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk, Evolution of Grain Boundary Phases During the Homogenization of AA7020 Aluminum Alloy, Metall. Mater. Trans. A, 2009, 40, p 717–728CrossRef
26.
Zurück zum Zitat B. Li, Q. Pan, and Z. Yin, Characterization of Hot Deformation Behavior of As-Homogenized Al-Cu-Li-Sc-Zr Alloy Using Processing Maps, Mater. Sci. Eng., A, 2014, 614, p 199–206CrossRef B. Li, Q. Pan, and Z. Yin, Characterization of Hot Deformation Behavior of As-Homogenized Al-Cu-Li-Sc-Zr Alloy Using Processing Maps, Mater. Sci. Eng., A, 2014, 614, p 199–206CrossRef
27.
Zurück zum Zitat Y. Zhang, S. Jiang, Y. Zhao, and D. Shan, Isothermal Precision Forging of Complex-Shape Rotating Disk of Aluminum Alloy Based on Processing Map and Digitized Technology, Mater. Sci. Eng., A, 2013, 580, p 294–304CrossRef Y. Zhang, S. Jiang, Y. Zhao, and D. Shan, Isothermal Precision Forging of Complex-Shape Rotating Disk of Aluminum Alloy Based on Processing Map and Digitized Technology, Mater. Sci. Eng., A, 2013, 580, p 294–304CrossRef
28.
Zurück zum Zitat A. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi, A Comparative Study on the Capability of Johnson-Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6Al-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61CrossRef A. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi, A Comparative Study on the Capability of Johnson-Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6Al-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61CrossRef
29.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRef C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRef
30.
Zurück zum Zitat Z. Yang, F. Zhang, C. Zheng, M. Zhang, B. Lv, and L. Qu, Study on Hot Deformation Behaviour and Processing Maps of Low Carbon Bainitic Steel, Mater. Des., 2015, 66, p 258–266CrossRef Z. Yang, F. Zhang, C. Zheng, M. Zhang, B. Lv, and L. Qu, Study on Hot Deformation Behaviour and Processing Maps of Low Carbon Bainitic Steel, Mater. Des., 2015, 66, p 258–266CrossRef
31.
Zurück zum Zitat L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloys Comp., 2015, 623, p 69–78CrossRef L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloys Comp., 2015, 623, p 69–78CrossRef
32.
Zurück zum Zitat C. Liao, H. Wu, C. Wu, F. Zhu, and S. Lee, Hot Deformation Behavior and Flow Stress Modeling of Annealed AZ61 Mg Alloys, Prog. Nat. Sci., 2014, 24, p 253–265CrossRef C. Liao, H. Wu, C. Wu, F. Zhu, and S. Lee, Hot Deformation Behavior and Flow Stress Modeling of Annealed AZ61 Mg Alloys, Prog. Nat. Sci., 2014, 24, p 253–265CrossRef
33.
Zurück zum Zitat Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng., A, 1998, 243, p 82–88CrossRef Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng., A, 1998, 243, p 82–88CrossRef
34.
Zurück zum Zitat Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1988, 43, p 243–258CrossRef Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1988, 43, p 243–258CrossRef
35.
Zurück zum Zitat Y. Yang, Z. Zhang, and X. Zhang, Processing Map of Al2O3 Particulate Reinforced Al Alloy Matrix Composites, Mater. Sci. Eng., A, 2012, 558, p 112–118CrossRef Y. Yang, Z. Zhang, and X. Zhang, Processing Map of Al2O3 Particulate Reinforced Al Alloy Matrix Composites, Mater. Sci. Eng., A, 2012, 558, p 112–118CrossRef
36.
Zurück zum Zitat Y. Yang, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, The Effects of Grain Size on the Hot Deformation and Processing Map for 7075 Aluminum Alloy, Mater. Des., 2013, 51, p 592–597CrossRef Y. Yang, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, The Effects of Grain Size on the Hot Deformation and Processing Map for 7075 Aluminum Alloy, Mater. Des., 2013, 51, p 592–597CrossRef
37.
Zurück zum Zitat Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Comp., 2013, 550, p 438–445CrossRef Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Comp., 2013, 550, p 438–445CrossRef
Metadaten
Titel
Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-cast and Homogenized States
verfasst von
Liang Chen
Guoqun Zhao
Jie Gong
Xiaoxue Chen
Mengmeng Chen
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1734-4

Weitere Artikel der Ausgabe 12/2015

Journal of Materials Engineering and Performance 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.